Metamath Proof Explorer


Theorem cnambfre

Description: A real-valued, a.e. continuous function is measurable. (Contributed by Brendan Leahy, 4-Apr-2018)

Ref Expression
Assertion cnambfre ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → 𝐹 ∈ MblFn )

Proof

Step Hyp Ref Expression
1 id ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℝ )
2 1 feqmptd ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )
3 2 cnveqd ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) )
4 3 imaeq1d ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹𝑏 ) = ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) “ 𝑏 ) )
5 4 ad2antrr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( 𝐹𝑏 ) = ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) “ 𝑏 ) )
6 exmid ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) )
7 6 biantrur ( ( 𝐹𝑥 ) ∈ 𝑏 ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) )
8 andir ( ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) )
9 7 8 bitri ( ( 𝐹𝑥 ) ∈ 𝑏 ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) )
10 retopbas ran (,) ∈ TopBases
11 bastg ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) )
12 10 11 ax-mp ran (,) ⊆ ( topGen ‘ ran (,) )
13 12 sseli ( 𝑏 ∈ ran (,) → 𝑏 ∈ ( topGen ‘ ran (,) ) )
14 13 ad2antlr ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) → 𝑏 ∈ ( topGen ‘ ran (,) ) )
15 cnpimaex ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
16 15 3com12 ( ( 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
17 16 3expa ( ( ( 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
18 14 17 sylanl1 ( ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
19 18 ex ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ( 𝐹𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) )
20 simprrr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹𝑦 ) ⊆ 𝑏 )
21 ffn ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 Fn 𝐴 )
22 21 adantr ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 Fn 𝐴 )
23 restsspw ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ⊆ 𝒫 𝐴
24 23 sseli ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → 𝑦 ∈ 𝒫 𝐴 )
25 24 elpwid ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → 𝑦𝐴 )
26 simpl ( ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → 𝑥𝑦 )
27 fnfvima ( ( 𝐹 Fn 𝐴𝑦𝐴𝑥𝑦 ) → ( 𝐹𝑥 ) ∈ ( 𝐹𝑦 ) )
28 22 25 26 27 syl3an ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) → ( 𝐹𝑥 ) ∈ ( 𝐹𝑦 ) )
29 28 3expb ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹𝑥 ) ∈ ( 𝐹𝑦 ) )
30 20 29 sseldd ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹𝑥 ) ∈ 𝑏 )
31 30 rexlimdvaa ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → ( 𝐹𝑥 ) ∈ 𝑏 ) )
32 31 ad3antrrr ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → ( 𝐹𝑥 ) ∈ 𝑏 ) )
33 19 32 impbid ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ( 𝐹𝑥 ) ∈ 𝑏 ↔ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) )
34 33 pm5.32da ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) → ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ↔ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ) )
35 r19.42v ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ↔ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) )
36 34 35 bitr4di ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) → ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ↔ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ) )
37 36 orbi1d ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) → ( ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) ↔ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) ) )
38 9 37 syl5bb ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥𝐴 ) → ( ( 𝐹𝑥 ) ∈ 𝑏 ↔ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) ) )
39 38 rabbidva ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ∈ 𝑏 } = { 𝑥𝐴 ∣ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) } )
40 eqid ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) = ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) )
41 40 mptpreima ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) “ 𝑏 ) = { 𝑥𝐴 ∣ ( 𝐹𝑥 ) ∈ 𝑏 }
42 unrab ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) = { 𝑥𝐴 ∣ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) ) }
43 39 41 42 3eqtr4g ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ( 𝑥𝐴 ↦ ( 𝐹𝑥 ) ) “ 𝑏 ) = ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) )
44 5 43 eqtrd ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( 𝐹𝑏 ) = ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) )
45 44 3adantl3 ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( 𝐹𝑏 ) = ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) )
46 incom ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∩ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } )
47 dfin4 ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∩ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) )
48 inrab ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) }
49 48 a1i ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } )
50 49 iuneq2i 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ) = 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) }
51 iunin2 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ) = ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } )
52 iunrab 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } = { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) }
53 50 51 52 3eqtr3i ( { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) }
54 46 47 53 3eqtr3i ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) }
55 eqeq2 ( 𝑦 = if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) → ( { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = 𝑦 ↔ { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) )
56 eqeq2 ( ∅ = if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) → ( { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = ∅ ↔ { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) )
57 simprrl ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ∧ ( 𝑥𝐴 ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ) → 𝑥𝑦 )
58 25 adantr ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → 𝑦𝐴 )
59 58 sselda ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ∧ 𝑥𝑦 ) → 𝑥𝐴 )
60 pm3.22 ( ( ( 𝐹𝑦 ) ⊆ 𝑏𝑥𝑦 ) → ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
61 60 adantll ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ∧ 𝑥𝑦 ) → ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
62 59 61 jca ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ∧ 𝑥𝑦 ) → ( 𝑥𝐴 ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) )
63 57 62 impbida ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → ( ( 𝑥𝐴 ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) ↔ 𝑥𝑦 ) )
64 63 abbidv ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } = { 𝑥𝑥𝑦 } )
65 df-rab { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = { 𝑥 ∣ ( 𝑥𝐴 ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) }
66 cvjust 𝑦 = { 𝑥𝑥𝑦 }
67 64 65 66 3eqtr4g ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = 𝑦 )
68 simpr ( ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) → ( 𝐹𝑦 ) ⊆ 𝑏 )
69 68 con3i ( ¬ ( 𝐹𝑦 ) ⊆ 𝑏 → ¬ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
70 69 ralrimivw ( ¬ ( 𝐹𝑦 ) ⊆ 𝑏 → ∀ 𝑥𝐴 ¬ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
71 rabeq0 ( { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = ∅ ↔ ∀ 𝑥𝐴 ¬ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) )
72 70 71 sylibr ( ¬ ( 𝐹𝑦 ) ⊆ 𝑏 → { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = ∅ )
73 72 adantl ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ¬ ( 𝐹𝑦 ) ⊆ 𝑏 ) → { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = ∅ )
74 55 56 67 73 ifbothda ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) )
75 74 iuneq2i 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } = 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ )
76 retop ( topGen ‘ ran (,) ) ∈ Top
77 resttop ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ∈ dom vol ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top )
78 76 77 mpan ( 𝐴 ∈ dom vol → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top )
79 0opn ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top → ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
80 78 79 syl ( 𝐴 ∈ dom vol → ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
81 ifcl ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
82 81 ancoms ( ( ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
83 80 82 sylan ( ( 𝐴 ∈ dom vol ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
84 83 ralrimiva ( 𝐴 ∈ dom vol → ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
85 iunopn ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ∧ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
86 78 84 85 syl2anc ( 𝐴 ∈ dom vol → 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) )
87 eqid ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 )
88 87 subopnmbl ( ( 𝐴 ∈ dom vol ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ dom vol )
89 86 88 mpdan ( 𝐴 ∈ dom vol → 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ dom vol )
90 75 89 eqeltrid ( 𝐴 ∈ dom vol → 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∈ dom vol )
91 difss ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) }
92 ssrab2 { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴
93 92 rgenw 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴
94 iunss ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 ↔ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 )
95 93 94 mpbir 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴
96 91 95 sstri ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ 𝐴
97 mblss ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ )
98 96 97 sstrid ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ℝ )
99 ssdif ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) )
100 95 99 ax-mp ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } )
101 rele Rel E
102 elrelimasn ( Rel E → ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) )
103 101 102 ax-mp ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) )
104 fvex ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ V
105 104 epeli ( 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) )
106 103 105 bitr2i ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) )
107 106 anbi2i ( ( 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ↔ ( 𝑥𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) )
108 ovex ( ℝ ↑m 𝐴 ) ∈ V
109 108 rabex { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } ∈ V
110 eqid ( 𝑥𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } ) = ( 𝑥𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } )
111 109 110 fnmpti ( 𝑥𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } ) Fn 𝐴
112 retopon ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ )
113 resttopon ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
114 112 97 113 sylancr ( 𝐴 ∈ dom vol → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) )
115 cnpfval ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) = ( 𝑥𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } ) )
116 114 112 115 sylancl ( 𝐴 ∈ dom vol → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) = ( 𝑥𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } ) )
117 116 fneq1d ( 𝐴 ∈ dom vol → ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 ↔ ( 𝑥𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥𝑦 ∧ ( 𝑓𝑦 ) ⊆ 𝑏 ) ) } ) Fn 𝐴 ) )
118 111 117 mpbiri ( 𝐴 ∈ dom vol → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 )
119 elpreima ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 → ( 𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ ( 𝑥𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) )
120 118 119 syl ( 𝐴 ∈ dom vol → ( 𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ ( 𝑥𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) )
121 107 120 bitr4id ( 𝐴 ∈ dom vol → ( ( 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ↔ 𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ) )
122 121 abbidv ( 𝐴 ∈ dom vol → { 𝑥 ∣ ( 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) } = { 𝑥𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } )
123 df-rab { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) }
124 imaco ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) = ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) )
125 abid2 { 𝑥𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } = ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) )
126 124 125 eqtr4i ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) = { 𝑥𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) }
127 122 123 126 3eqtr4g ( 𝐴 ∈ dom vol → { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } = ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) )
128 127 difeq2d ( 𝐴 ∈ dom vol → ( 𝐴 ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
129 100 128 sseqtrid ( 𝐴 ∈ dom vol → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
130 difss ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ 𝐴
131 130 97 sstrid ( 𝐴 ∈ dom vol → ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ )
132 129 131 jca ( 𝐴 ∈ dom vol → ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) )
133 ovolssnul ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 )
134 133 3expa ( ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 )
135 132 134 sylan ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 )
136 nulmbl ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ℝ ∧ ( vol* ‘ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol )
137 98 135 136 syl2an2r ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol )
138 difmbl ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∈ dom vol ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) ∈ dom vol )
139 90 137 138 syl2an2r ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥𝐴 ∣ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥𝐴𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) ∈ dom vol )
140 54 139 eqeltrrid ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∈ dom vol )
141 ssrab2 { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ 𝐴
142 141 97 sstrid ( 𝐴 ∈ dom vol → { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ ℝ )
143 124 eleq2i ( 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ↔ 𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) )
144 ibar ( 𝑥𝐴 → ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ ( 𝑥𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) )
145 106 144 syl5rbb ( 𝑥𝐴 → ( ( 𝑥𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) )
146 120 145 sylan9bb ( ( 𝐴 ∈ dom vol ∧ 𝑥𝐴 ) → ( 𝑥 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) )
147 143 146 syl5rbb ( ( 𝐴 ∈ dom vol ∧ 𝑥𝐴 ) → ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
148 147 notbid ( ( 𝐴 ∈ dom vol ∧ 𝑥𝐴 ) → ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ ¬ 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
149 148 biimpd ( ( 𝐴 ∈ dom vol ∧ 𝑥𝐴 ) → ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) → ¬ 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
150 149 adantrd ( ( 𝐴 ∈ dom vol ∧ 𝑥𝐴 ) → ( ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) → ¬ 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
151 150 ss2rabdv ( 𝐴 ∈ dom vol → { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ { 𝑥𝐴 ∣ ¬ 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) } )
152 dfdif2 ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) = { 𝑥𝐴 ∣ ¬ 𝑥 ∈ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) }
153 151 152 sseqtrrdi ( 𝐴 ∈ dom vol → { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) )
154 153 131 jca ( 𝐴 ∈ dom vol → ( { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) )
155 ovolssnul ( ( { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) = 0 )
156 155 3expa ( ( ( { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) = 0 )
157 154 156 sylan ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) = 0 )
158 nulmbl ( ( { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ⊆ ℝ ∧ ( vol* ‘ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) = 0 ) → { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ∈ dom vol )
159 142 157 158 syl2an2r ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ∈ dom vol )
160 unmbl ( ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∈ dom vol ∧ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) → ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol )
161 140 159 160 syl2anc ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol )
162 161 3adant1 ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol )
163 162 adantr ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( { 𝑥𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥𝑦 ∧ ( 𝐹𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol )
164 45 163 eqeltrd ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( 𝐹𝑏 ) ∈ dom vol )
165 164 ralrimiva ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ∀ 𝑏 ∈ ran (,) ( 𝐹𝑏 ) ∈ dom vol )
166 ismbf ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑏 ∈ ran (,) ( 𝐹𝑏 ) ∈ dom vol ) )
167 166 3ad2ant1 ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑏 ∈ ran (,) ( 𝐹𝑏 ) ∈ dom vol ) )
168 165 167 mpbird ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → 𝐹 ∈ MblFn )