| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℝ ) |
| 2 |
1
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 3 |
2
|
cnveqd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ◡ 𝐹 = ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 4 |
3
|
imaeq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ 𝑏 ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) ) |
| 6 |
|
exmid |
⊢ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) |
| 7 |
6
|
biantrur |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) |
| 8 |
|
andir |
⊢ ( ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) |
| 9 |
7 8
|
bitri |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) |
| 10 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
| 11 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
| 12 |
10 11
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 13 |
12
|
sseli |
⊢ ( 𝑏 ∈ ran (,) → 𝑏 ∈ ( topGen ‘ ran (,) ) ) |
| 14 |
13
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑏 ∈ ( topGen ‘ ran (,) ) ) |
| 15 |
|
cnpimaex |
⊢ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 16 |
15
|
3com12 |
⊢ ( ( 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 17 |
16
|
3expa |
⊢ ( ( ( 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 18 |
14 17
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 19 |
18
|
ex |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
| 20 |
|
simprrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) |
| 21 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 Fn 𝐴 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 Fn 𝐴 ) |
| 23 |
|
restsspw |
⊢ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
| 24 |
23
|
sseli |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 25 |
24
|
elpwid |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
| 26 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → 𝑥 ∈ 𝑦 ) |
| 27 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑦 ) ) |
| 28 |
22 25 26 27
|
syl3an |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑦 ) ) |
| 29 |
28
|
3expb |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑦 ) ) |
| 30 |
20 29
|
sseldd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) |
| 31 |
30
|
rexlimdvaa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) |
| 32 |
31
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) |
| 33 |
19 32
|
impbid |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
| 34 |
33
|
pm5.32da |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ↔ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) ) |
| 35 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ↔ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
| 36 |
34 35
|
bitr4di |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ↔ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) ) |
| 37 |
36
|
orbi1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ↔ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) ) |
| 38 |
9 37
|
bitrid |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) ) |
| 39 |
38
|
rabbidva |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 } = { 𝑥 ∈ 𝐴 ∣ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) } ) |
| 40 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 41 |
40
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 } |
| 42 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) } |
| 43 |
39 41 42
|
3eqtr4g |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) = ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ) |
| 44 |
5 43
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) = ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ) |
| 45 |
44
|
3adantl3 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) = ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ) |
| 46 |
|
incom |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) |
| 47 |
|
dfin4 |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) |
| 48 |
|
inrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
| 49 |
48
|
a1i |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ) |
| 50 |
49
|
iuneq2i |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
| 51 |
|
iunin2 |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) |
| 52 |
|
iunrab |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
| 53 |
50 51 52
|
3eqtr3i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
| 54 |
46 47 53
|
3eqtr3i |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
| 55 |
|
eqeq2 |
⊢ ( 𝑦 = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) → ( { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = 𝑦 ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) ) |
| 56 |
|
eqeq2 |
⊢ ( ∅ = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) → ( { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) ) |
| 57 |
|
simprrl |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → 𝑥 ∈ 𝑦 ) |
| 58 |
25
|
adantr |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → 𝑦 ⊆ 𝐴 ) |
| 59 |
58
|
sselda |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
| 60 |
|
pm3.22 |
⊢ ( ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 61 |
60
|
adantll |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 62 |
59 61
|
jca |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
| 63 |
57 62
|
impbida |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ↔ 𝑥 ∈ 𝑦 ) ) |
| 64 |
63
|
abbidv |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } = { 𝑥 ∣ 𝑥 ∈ 𝑦 } ) |
| 65 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
| 66 |
|
cvjust |
⊢ 𝑦 = { 𝑥 ∣ 𝑥 ∈ 𝑦 } |
| 67 |
64 65 66
|
3eqtr4g |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = 𝑦 ) |
| 68 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) |
| 69 |
68
|
con3i |
⊢ ( ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 → ¬ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 70 |
69
|
ralrimivw |
⊢ ( ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 → ∀ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 71 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
| 72 |
70 71
|
sylibr |
⊢ ( ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ) |
| 73 |
72
|
adantl |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ) |
| 74 |
55 56 67 73
|
ifbothda |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) |
| 75 |
74
|
iuneq2i |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) |
| 76 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
| 77 |
|
resttop |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ∈ dom vol ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ) |
| 78 |
76 77
|
mpan |
⊢ ( 𝐴 ∈ dom vol → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ) |
| 79 |
|
0opn |
⊢ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top → ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 80 |
78 79
|
syl |
⊢ ( 𝐴 ∈ dom vol → ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 81 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 82 |
81
|
ancoms |
⊢ ( ( ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 83 |
80 82
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 84 |
83
|
ralrimiva |
⊢ ( 𝐴 ∈ dom vol → ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 85 |
|
iunopn |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ∧ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 86 |
78 84 85
|
syl2anc |
⊢ ( 𝐴 ∈ dom vol → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
| 87 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) |
| 88 |
87
|
subopnmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ dom vol ) |
| 89 |
86 88
|
mpdan |
⊢ ( 𝐴 ∈ dom vol → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ dom vol ) |
| 90 |
75 89
|
eqeltrid |
⊢ ( 𝐴 ∈ dom vol → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∈ dom vol ) |
| 91 |
|
difss |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } |
| 92 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 |
| 93 |
92
|
rgenw |
⊢ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 |
| 94 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 ↔ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 ) |
| 95 |
93 94
|
mpbir |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 |
| 96 |
91 95
|
sstri |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ 𝐴 |
| 97 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 98 |
96 97
|
sstrid |
⊢ ( 𝐴 ∈ dom vol → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ℝ ) |
| 99 |
|
ssdif |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) |
| 100 |
95 99
|
ax-mp |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) |
| 101 |
|
rele |
⊢ Rel E |
| 102 |
|
elrelimasn |
⊢ ( Rel E → ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ) |
| 103 |
101 102
|
ax-mp |
⊢ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) |
| 104 |
|
fvex |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ V |
| 105 |
104
|
epeli |
⊢ ( 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) |
| 106 |
103 105
|
bitr2i |
⊢ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) |
| 107 |
106
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) |
| 108 |
|
ovex |
⊢ ( ℝ ↑m 𝐴 ) ∈ V |
| 109 |
108
|
rabex |
⊢ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ∈ V |
| 110 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) |
| 111 |
109 110
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) Fn 𝐴 |
| 112 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
| 113 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 114 |
112 97 113
|
sylancr |
⊢ ( 𝐴 ∈ dom vol → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 115 |
|
cnpfval |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) ) |
| 116 |
114 112 115
|
sylancl |
⊢ ( 𝐴 ∈ dom vol → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) ) |
| 117 |
116
|
fneq1d |
⊢ ( 𝐴 ∈ dom vol → ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) Fn 𝐴 ) ) |
| 118 |
111 117
|
mpbiri |
⊢ ( 𝐴 ∈ dom vol → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 ) |
| 119 |
|
elpreima |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) ) |
| 120 |
118 119
|
syl |
⊢ ( 𝐴 ∈ dom vol → ( 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) ) |
| 121 |
107 120
|
bitr4id |
⊢ ( 𝐴 ∈ dom vol → ( ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ↔ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ) ) |
| 122 |
121
|
abbidv |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) } = { 𝑥 ∣ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } ) |
| 123 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) } |
| 124 |
|
imaco |
⊢ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) = ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) |
| 125 |
|
abid2 |
⊢ { 𝑥 ∣ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } = ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) |
| 126 |
124 125
|
eqtr4i |
⊢ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) = { 𝑥 ∣ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } |
| 127 |
122 123 126
|
3eqtr4g |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } = ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) |
| 128 |
127
|
difeq2d |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 129 |
100 128
|
sseqtrid |
⊢ ( 𝐴 ∈ dom vol → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 130 |
|
difss |
⊢ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ 𝐴 |
| 131 |
130 97
|
sstrid |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) |
| 132 |
129 131
|
jca |
⊢ ( 𝐴 ∈ dom vol → ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ) |
| 133 |
|
ovolssnul |
⊢ ( ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) |
| 134 |
133
|
3expa |
⊢ ( ( ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) |
| 135 |
132 134
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) |
| 136 |
|
nulmbl |
⊢ ( ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) |
| 137 |
98 135 136
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) |
| 138 |
|
difmbl |
⊢ ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∈ dom vol ∧ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) ∈ dom vol ) |
| 139 |
90 137 138
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) ∈ dom vol ) |
| 140 |
54 139
|
eqeltrrid |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∈ dom vol ) |
| 141 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ 𝐴 |
| 142 |
141 97
|
sstrid |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ℝ ) |
| 143 |
124
|
eleq2i |
⊢ ( 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ↔ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ) |
| 144 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) ) |
| 145 |
106 144
|
bitr2id |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ) |
| 146 |
120 145
|
sylan9bb |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ) |
| 147 |
143 146
|
bitr2id |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 148 |
147
|
notbid |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 149 |
148
|
biimpd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) → ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 150 |
149
|
adantrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 151 |
150
|
ss2rabdv |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) } ) |
| 152 |
|
dfdif2 |
⊢ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) } |
| 153 |
151 152
|
sseqtrrdi |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
| 154 |
153 131
|
jca |
⊢ ( 𝐴 ∈ dom vol → ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ) |
| 155 |
|
ovolssnul |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) |
| 156 |
155
|
3expa |
⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) |
| 157 |
154 156
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) |
| 158 |
|
nulmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ℝ ∧ ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) |
| 159 |
142 157 158
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) |
| 160 |
|
unmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∈ dom vol ∧ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
| 161 |
140 159 160
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
| 162 |
161
|
3adant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
| 163 |
162
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
| 164 |
45 163
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) |
| 165 |
164
|
ralrimiva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ∀ 𝑏 ∈ ran (,) ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) |
| 166 |
|
ismbf |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑏 ∈ ran (,) ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) ) |
| 167 |
166
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑏 ∈ ran (,) ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) ) |
| 168 |
165 167
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → 𝐹 ∈ MblFn ) |