Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 : 𝐴 ⟶ ℝ ) |
2 |
1
|
feqmptd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
3 |
2
|
cnveqd |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ◡ 𝐹 = ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
4 |
3
|
imaeq1d |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( ◡ 𝐹 “ 𝑏 ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) ) |
5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) ) |
6 |
|
exmid |
⊢ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) |
7 |
6
|
biantrur |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) |
8 |
|
andir |
⊢ ( ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∨ ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) |
9 |
7 8
|
bitri |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) |
10 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
11 |
|
bastg |
⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) |
12 |
10 11
|
ax-mp |
⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
13 |
12
|
sseli |
⊢ ( 𝑏 ∈ ran (,) → 𝑏 ∈ ( topGen ‘ ran (,) ) ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑏 ∈ ( topGen ‘ ran (,) ) ) |
15 |
|
cnpimaex |
⊢ ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
16 |
15
|
3com12 |
⊢ ( ( 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
17 |
16
|
3expa |
⊢ ( ( ( 𝑏 ∈ ( topGen ‘ ran (,) ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
18 |
14 17
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
19 |
18
|
ex |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
20 |
|
simprrr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) |
21 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → 𝐹 Fn 𝐴 ) |
22 |
21
|
adantr |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → 𝐹 Fn 𝐴 ) |
23 |
|
restsspw |
⊢ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
24 |
23
|
sseli |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → 𝑦 ∈ 𝒫 𝐴 ) |
25 |
24
|
elpwid |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
26 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → 𝑥 ∈ 𝑦 ) |
27 |
|
fnfvima |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑦 ) ) |
28 |
22 25 26 27
|
syl3an |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑦 ) ) |
29 |
28
|
3expb |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ 𝑦 ) ) |
30 |
20 29
|
sseldd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) |
31 |
30
|
rexlimdvaa |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) → ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) |
32 |
31
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) |
33 |
19 32
|
impbid |
⊢ ( ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
34 |
33
|
pm5.32da |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ↔ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) ) |
35 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ↔ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
36 |
34 35
|
bitr4di |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ↔ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) ) |
37 |
36
|
orbi1d |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ↔ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) ) |
38 |
9 37
|
syl5bb |
⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ↔ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) ) ) |
39 |
38
|
rabbidva |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 } = { 𝑥 ∈ 𝐴 ∣ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) } ) |
40 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) |
41 |
40
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 } |
42 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ( ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ∨ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) ) } |
43 |
39 41 42
|
3eqtr4g |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) “ 𝑏 ) = ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ) |
44 |
5 43
|
eqtrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) = ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ) |
45 |
44
|
3adantl3 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) = ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ) |
46 |
|
incom |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) |
47 |
|
dfin4 |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∩ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) |
48 |
|
inrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
49 |
48
|
a1i |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ) |
50 |
49
|
iuneq2i |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
51 |
|
iunin2 |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) |
52 |
|
iunrab |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
53 |
50 51 52
|
3eqtr3i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ∩ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ) = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
54 |
46 47 53
|
3eqtr3i |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
55 |
|
eqeq2 |
⊢ ( 𝑦 = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) → ( { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = 𝑦 ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) ) |
56 |
|
eqeq2 |
⊢ ( ∅ = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) → ( { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ↔ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) ) |
57 |
|
simprrl |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) → 𝑥 ∈ 𝑦 ) |
58 |
25
|
adantr |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → 𝑦 ⊆ 𝐴 ) |
59 |
58
|
sselda |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ 𝑥 ∈ 𝑦 ) → 𝑥 ∈ 𝐴 ) |
60 |
|
pm3.22 |
⊢ ( ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
61 |
60
|
adantll |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
62 |
59 61
|
jca |
⊢ ( ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ) |
63 |
57 62
|
impbida |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) ↔ 𝑥 ∈ 𝑦 ) ) |
64 |
63
|
abbidv |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } = { 𝑥 ∣ 𝑥 ∈ 𝑦 } ) |
65 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } |
66 |
|
cvjust |
⊢ 𝑦 = { 𝑥 ∣ 𝑥 ∈ 𝑦 } |
67 |
64 65 66
|
3eqtr4g |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = 𝑦 ) |
68 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) |
69 |
68
|
con3i |
⊢ ( ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 → ¬ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
70 |
69
|
ralrimivw |
⊢ ( ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 → ∀ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
71 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) |
72 |
70 71
|
sylibr |
⊢ ( ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ) |
73 |
72
|
adantl |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ¬ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∅ ) |
74 |
55 56 67 73
|
ifbothda |
⊢ ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ) |
75 |
74
|
iuneq2i |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } = ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) |
76 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
77 |
|
resttop |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ 𝐴 ∈ dom vol ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ) |
78 |
76 77
|
mpan |
⊢ ( 𝐴 ∈ dom vol → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ) |
79 |
|
0opn |
⊢ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top → ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
80 |
78 79
|
syl |
⊢ ( 𝐴 ∈ dom vol → ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
81 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
82 |
81
|
ancoms |
⊢ ( ( ∅ ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
83 |
80 82
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
84 |
83
|
ralrimiva |
⊢ ( 𝐴 ∈ dom vol → ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
85 |
|
iunopn |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Top ∧ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
86 |
78 84 85
|
syl2anc |
⊢ ( 𝐴 ∈ dom vol → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
87 |
|
eqid |
⊢ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) |
88 |
87
|
subopnmbl |
⊢ ( ( 𝐴 ∈ dom vol ∧ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ dom vol ) |
89 |
86 88
|
mpdan |
⊢ ( 𝐴 ∈ dom vol → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) if ( ( 𝐹 “ 𝑦 ) ⊆ 𝑏 , 𝑦 , ∅ ) ∈ dom vol ) |
90 |
75 89
|
eqeltrid |
⊢ ( 𝐴 ∈ dom vol → ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∈ dom vol ) |
91 |
|
difss |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } |
92 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 |
93 |
92
|
rgenw |
⊢ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 |
94 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 ↔ ∀ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 ) |
95 |
93 94
|
mpbir |
⊢ ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 |
96 |
91 95
|
sstri |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ 𝐴 |
97 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
98 |
96 97
|
sstrid |
⊢ ( 𝐴 ∈ dom vol → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ℝ ) |
99 |
|
ssdif |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ⊆ 𝐴 → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) |
100 |
95 99
|
ax-mp |
⊢ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) |
101 |
|
rele |
⊢ Rel E |
102 |
|
elrelimasn |
⊢ ( Rel E → ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ) |
103 |
101 102
|
ax-mp |
⊢ ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) |
104 |
|
fvex |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ V |
105 |
104
|
epeli |
⊢ ( 𝐹 E ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) |
106 |
103 105
|
bitr2i |
⊢ ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) |
107 |
106
|
anbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) |
108 |
|
ovex |
⊢ ( ℝ ↑m 𝐴 ) ∈ V |
109 |
108
|
rabex |
⊢ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ∈ V |
110 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) |
111 |
109 110
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) Fn 𝐴 |
112 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
113 |
|
resttopon |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ∧ 𝐴 ⊆ ℝ ) → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
114 |
112 97 113
|
sylancr |
⊢ ( 𝐴 ∈ dom vol → ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ) |
115 |
|
cnpfval |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ ( TopOn ‘ 𝐴 ) ∧ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) ) → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) ) |
116 |
114 112 115
|
sylancl |
⊢ ( 𝐴 ∈ dom vol → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) = ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) ) |
117 |
116
|
fneq1d |
⊢ ( 𝐴 ∈ dom vol → ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ { 𝑓 ∈ ( ℝ ↑m 𝐴 ) ∣ ∀ 𝑏 ∈ ( topGen ‘ ran (,) ) ( ( 𝑓 ‘ 𝑥 ) ∈ 𝑏 → ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝑥 ∈ 𝑦 ∧ ( 𝑓 “ 𝑦 ) ⊆ 𝑏 ) ) } ) Fn 𝐴 ) ) |
118 |
111 117
|
mpbiri |
⊢ ( 𝐴 ∈ dom vol → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 ) |
119 |
|
elpreima |
⊢ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) Fn 𝐴 → ( 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) ) |
120 |
118 119
|
syl |
⊢ ( 𝐴 ∈ dom vol → ( 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) ) |
121 |
107 120
|
bitr4id |
⊢ ( 𝐴 ∈ dom vol → ( ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ↔ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ) ) |
122 |
121
|
abbidv |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) } = { 𝑥 ∣ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } ) |
123 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) } |
124 |
|
imaco |
⊢ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) = ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) |
125 |
|
abid2 |
⊢ { 𝑥 ∣ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } = ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) |
126 |
124 125
|
eqtr4i |
⊢ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) = { 𝑥 ∣ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) } |
127 |
122 123 126
|
3eqtr4g |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } = ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) |
128 |
127
|
difeq2d |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) = ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
129 |
100 128
|
sseqtrid |
⊢ ( 𝐴 ∈ dom vol → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
130 |
|
difss |
⊢ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ 𝐴 |
131 |
130 97
|
sstrid |
⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) |
132 |
129 131
|
jca |
⊢ ( 𝐴 ∈ dom vol → ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ) |
133 |
|
ovolssnul |
⊢ ( ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) |
134 |
133
|
3expa |
⊢ ( ( ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) |
135 |
132 134
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) |
136 |
|
nulmbl |
⊢ ( ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ⊆ ℝ ∧ ( vol* ‘ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) = 0 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) |
137 |
98 135 136
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) |
138 |
|
difmbl |
⊢ ( ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∈ dom vol ∧ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ∈ dom vol ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) ∈ dom vol ) |
139 |
90 137 138
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ ( ∪ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) { 𝑥 ∈ 𝐴 ∣ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) } ∖ { 𝑥 ∈ 𝐴 ∣ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) } ) ) ∈ dom vol ) |
140 |
54 139
|
eqeltrrid |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∈ dom vol ) |
141 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ 𝐴 |
142 |
141 97
|
sstrid |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ℝ ) |
143 |
124
|
eleq2i |
⊢ ( 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ↔ 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ) |
144 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ) ) |
145 |
106 144
|
bitr2id |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∈ ( E “ { 𝐹 } ) ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ) |
146 |
120 145
|
sylan9bb |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) “ ( E “ { 𝐹 } ) ) ↔ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ) ) |
147 |
143 146
|
bitr2id |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
148 |
147
|
notbid |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ↔ ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
149 |
148
|
biimpd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) → ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
150 |
149
|
adantrd |
⊢ ( ( 𝐴 ∈ dom vol ∧ 𝑥 ∈ 𝐴 ) → ( ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) → ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
151 |
150
|
ss2rabdv |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) } ) |
152 |
|
dfdif2 |
⊢ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) = { 𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) } |
153 |
151 152
|
sseqtrrdi |
⊢ ( 𝐴 ∈ dom vol → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) |
154 |
153 131
|
jca |
⊢ ( 𝐴 ∈ dom vol → ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ) |
155 |
|
ovolssnul |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) |
156 |
155
|
3expa |
⊢ ( ( ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ∧ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ⊆ ℝ ) ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) |
157 |
154 156
|
sylan |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) |
158 |
|
nulmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ⊆ ℝ ∧ ( vol* ‘ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) = 0 ) → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) |
159 |
142 157 158
|
syl2an2r |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) |
160 |
|
unmbl |
⊢ ( ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∈ dom vol ∧ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ∈ dom vol ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
161 |
140 159 160
|
syl2anc |
⊢ ( ( 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
162 |
161
|
3adant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
163 |
162
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ( 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝑥 ∈ 𝑦 ∧ ( 𝐹 “ 𝑦 ) ⊆ 𝑏 ) ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( ¬ 𝐹 ∈ ( ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝑏 ) } ) ∈ dom vol ) |
164 |
45 163
|
eqeltrd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) ∧ 𝑏 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) |
165 |
164
|
ralrimiva |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ∀ 𝑏 ∈ ran (,) ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) |
166 |
|
ismbf |
⊢ ( 𝐹 : 𝐴 ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑏 ∈ ran (,) ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) ) |
167 |
166
|
3ad2ant1 |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → ( 𝐹 ∈ MblFn ↔ ∀ 𝑏 ∈ ran (,) ( ◡ 𝐹 “ 𝑏 ) ∈ dom vol ) ) |
168 |
165 167
|
mpbird |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℝ ∧ 𝐴 ∈ dom vol ∧ ( vol* ‘ ( 𝐴 ∖ ( ( ◡ ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) CnP ( topGen ‘ ran (,) ) ) ∘ E ) “ { 𝐹 } ) ) ) = 0 ) → 𝐹 ∈ MblFn ) |