Metamath Proof Explorer


Theorem dvtanlem

Description: Lemma for dvtan - the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion dvtanlem ( cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 coscn cos ∈ ( ℂ –cn→ ℂ )
2 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
3 2 cncfcn1 ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
4 1 3 eleqtri cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
5 2 cnfldhaus ( TopOpen ‘ ℂfld ) ∈ Haus
6 0cn 0 ∈ ℂ
7 2 cnfldtopon ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ )
8 7 toponunii ℂ = ( TopOpen ‘ ℂfld )
9 8 sncld ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 0 ∈ ℂ ) → { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) )
10 5 6 9 mp2an { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) )
11 8 cldopn ( { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) )
12 10 11 ax-mp ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld )
13 cnima ( ( cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld ) )
14 4 12 13 mp2an ( cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld )