| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 3 |
2
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 4 |
1 3
|
eleqtri |
⊢ cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 5 |
|
cnn0opn |
⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |
| 6 |
|
cnima |
⊢ ( ( cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld ) |