Step |
Hyp |
Ref |
Expression |
1 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
3 |
2
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
4 |
1 3
|
eleqtri |
⊢ cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
5 |
2
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
6 |
|
0cn |
⊢ 0 ∈ ℂ |
7 |
2
|
cnfldtopon |
⊢ ( TopOpen ‘ ℂfld ) ∈ ( TopOn ‘ ℂ ) |
8 |
7
|
toponunii |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
9 |
8
|
sncld |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ 0 ∈ ℂ ) → { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
10 |
5 6 9
|
mp2an |
⊢ { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) |
11 |
8
|
cldopn |
⊢ ( { 0 } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) → ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) |
12 |
10 11
|
ax-mp |
⊢ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) |
13 |
|
cnima |
⊢ ( ( cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld ) ) |
14 |
4 12 13
|
mp2an |
⊢ ( ◡ cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld ) |