Metamath Proof Explorer


Theorem dvtanlem

Description: Lemma for dvtan - the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion dvtanlem ( cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld )

Proof

Step Hyp Ref Expression
1 coscn cos ∈ ( ℂ –cn→ ℂ )
2 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
3 2 cncfcn1 ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
4 1 3 eleqtri cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) )
5 cnn0opn ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld )
6 cnima ( ( cos ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ∧ ( ℂ ∖ { 0 } ) ∈ ( TopOpen ‘ ℂfld ) ) → ( cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld ) )
7 4 5 6 mp2an ( cos “ ( ℂ ∖ { 0 } ) ) ∈ ( TopOpen ‘ ℂfld )