| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
| 2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 3 |
2
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 4 |
1 3
|
eleqtri |
|- cos e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
| 5 |
|
cnn0opn |
|- ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) |
| 6 |
|
cnima |
|- ( ( cos e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) /\ ( CC \ { 0 } ) e. ( TopOpen ` CCfld ) ) -> ( `' cos " ( CC \ { 0 } ) ) e. ( TopOpen ` CCfld ) ) |
| 7 |
4 5 6
|
mp2an |
|- ( `' cos " ( CC \ { 0 } ) ) e. ( TopOpen ` CCfld ) |