| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-tan |
|- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) |
| 2 |
|
cnvimass |
|- ( `' cos " ( CC \ { 0 } ) ) C_ dom cos |
| 3 |
|
cosf |
|- cos : CC --> CC |
| 4 |
3
|
fdmi |
|- dom cos = CC |
| 5 |
2 4
|
sseqtri |
|- ( `' cos " ( CC \ { 0 } ) ) C_ CC |
| 6 |
5
|
sseli |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> x e. CC ) |
| 7 |
6
|
sincld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( sin ` x ) e. CC ) |
| 8 |
6
|
coscld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( cos ` x ) e. CC ) |
| 9 |
|
ffn |
|- ( cos : CC --> CC -> cos Fn CC ) |
| 10 |
|
elpreima |
|- ( cos Fn CC -> ( x e. ( `' cos " ( CC \ { 0 } ) ) <-> ( x e. CC /\ ( cos ` x ) e. ( CC \ { 0 } ) ) ) ) |
| 11 |
3 9 10
|
mp2b |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) <-> ( x e. CC /\ ( cos ` x ) e. ( CC \ { 0 } ) ) ) |
| 12 |
|
eldifsni |
|- ( ( cos ` x ) e. ( CC \ { 0 } ) -> ( cos ` x ) =/= 0 ) |
| 13 |
12
|
adantl |
|- ( ( x e. CC /\ ( cos ` x ) e. ( CC \ { 0 } ) ) -> ( cos ` x ) =/= 0 ) |
| 14 |
11 13
|
sylbi |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( cos ` x ) =/= 0 ) |
| 15 |
7 8 14
|
divrecd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( sin ` x ) / ( cos ` x ) ) = ( ( sin ` x ) x. ( 1 / ( cos ` x ) ) ) ) |
| 16 |
15
|
mpteq2ia |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) / ( cos ` x ) ) ) = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) x. ( 1 / ( cos ` x ) ) ) ) |
| 17 |
1 16
|
eqtri |
|- tan = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) x. ( 1 / ( cos ` x ) ) ) ) |
| 18 |
17
|
oveq2i |
|- ( CC _D tan ) = ( CC _D ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) x. ( 1 / ( cos ` x ) ) ) ) ) |
| 19 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 20 |
19
|
a1i |
|- ( T. -> CC e. { RR , CC } ) |
| 21 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
| 22 |
|
imass2 |
|- ( ( CC \ { 0 } ) C_ CC -> ( `' cos " ( CC \ { 0 } ) ) C_ ( `' cos " CC ) ) |
| 23 |
21 22
|
ax-mp |
|- ( `' cos " ( CC \ { 0 } ) ) C_ ( `' cos " CC ) |
| 24 |
|
fimacnv |
|- ( cos : CC --> CC -> ( `' cos " CC ) = CC ) |
| 25 |
3 24
|
ax-mp |
|- ( `' cos " CC ) = CC |
| 26 |
23 25
|
sseqtri |
|- ( `' cos " ( CC \ { 0 } ) ) C_ CC |
| 27 |
26
|
sseli |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> x e. CC ) |
| 28 |
27
|
sincld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( sin ` x ) e. CC ) |
| 29 |
28
|
adantl |
|- ( ( T. /\ x e. ( `' cos " ( CC \ { 0 } ) ) ) -> ( sin ` x ) e. CC ) |
| 30 |
8
|
adantl |
|- ( ( T. /\ x e. ( `' cos " ( CC \ { 0 } ) ) ) -> ( cos ` x ) e. CC ) |
| 31 |
|
sincl |
|- ( x e. CC -> ( sin ` x ) e. CC ) |
| 32 |
31
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( sin ` x ) e. CC ) |
| 33 |
|
coscl |
|- ( x e. CC -> ( cos ` x ) e. CC ) |
| 34 |
33
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( cos ` x ) e. CC ) |
| 35 |
|
dvsin |
|- ( CC _D sin ) = cos |
| 36 |
|
sinf |
|- sin : CC --> CC |
| 37 |
36
|
a1i |
|- ( T. -> sin : CC --> CC ) |
| 38 |
37
|
feqmptd |
|- ( T. -> sin = ( x e. CC |-> ( sin ` x ) ) ) |
| 39 |
38
|
oveq2d |
|- ( T. -> ( CC _D sin ) = ( CC _D ( x e. CC |-> ( sin ` x ) ) ) ) |
| 40 |
3
|
a1i |
|- ( T. -> cos : CC --> CC ) |
| 41 |
40
|
feqmptd |
|- ( T. -> cos = ( x e. CC |-> ( cos ` x ) ) ) |
| 42 |
35 39 41
|
3eqtr3a |
|- ( T. -> ( CC _D ( x e. CC |-> ( sin ` x ) ) ) = ( x e. CC |-> ( cos ` x ) ) ) |
| 43 |
26
|
a1i |
|- ( T. -> ( `' cos " ( CC \ { 0 } ) ) C_ CC ) |
| 44 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 45 |
44
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 46 |
45
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 47 |
|
dvtanlem |
|- ( `' cos " ( CC \ { 0 } ) ) e. ( TopOpen ` CCfld ) |
| 48 |
47
|
a1i |
|- ( T. -> ( `' cos " ( CC \ { 0 } ) ) e. ( TopOpen ` CCfld ) ) |
| 49 |
20 32 34 42 43 46 44 48
|
dvmptres |
|- ( T. -> ( CC _D ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( sin ` x ) ) ) = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( cos ` x ) ) ) |
| 50 |
8 14
|
reccld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( 1 / ( cos ` x ) ) e. CC ) |
| 51 |
50
|
adantl |
|- ( ( T. /\ x e. ( `' cos " ( CC \ { 0 } ) ) ) -> ( 1 / ( cos ` x ) ) e. CC ) |
| 52 |
|
ovexd |
|- ( ( T. /\ x e. ( `' cos " ( CC \ { 0 } ) ) ) -> ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) e. _V ) |
| 53 |
11
|
simprbi |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( cos ` x ) e. ( CC \ { 0 } ) ) |
| 54 |
53
|
adantl |
|- ( ( T. /\ x e. ( `' cos " ( CC \ { 0 } ) ) ) -> ( cos ` x ) e. ( CC \ { 0 } ) ) |
| 55 |
29
|
negcld |
|- ( ( T. /\ x e. ( `' cos " ( CC \ { 0 } ) ) ) -> -u ( sin ` x ) e. CC ) |
| 56 |
|
eldifi |
|- ( y e. ( CC \ { 0 } ) -> y e. CC ) |
| 57 |
|
eldifsni |
|- ( y e. ( CC \ { 0 } ) -> y =/= 0 ) |
| 58 |
56 57
|
reccld |
|- ( y e. ( CC \ { 0 } ) -> ( 1 / y ) e. CC ) |
| 59 |
58
|
adantl |
|- ( ( T. /\ y e. ( CC \ { 0 } ) ) -> ( 1 / y ) e. CC ) |
| 60 |
|
negex |
|- -u ( 1 / ( y ^ 2 ) ) e. _V |
| 61 |
60
|
a1i |
|- ( ( T. /\ y e. ( CC \ { 0 } ) ) -> -u ( 1 / ( y ^ 2 ) ) e. _V ) |
| 62 |
32
|
negcld |
|- ( ( T. /\ x e. CC ) -> -u ( sin ` x ) e. CC ) |
| 63 |
41
|
oveq2d |
|- ( T. -> ( CC _D cos ) = ( CC _D ( x e. CC |-> ( cos ` x ) ) ) ) |
| 64 |
|
dvcos |
|- ( CC _D cos ) = ( x e. CC |-> -u ( sin ` x ) ) |
| 65 |
63 64
|
eqtr3di |
|- ( T. -> ( CC _D ( x e. CC |-> ( cos ` x ) ) ) = ( x e. CC |-> -u ( sin ` x ) ) ) |
| 66 |
20 34 62 65 43 46 44 48
|
dvmptres |
|- ( T. -> ( CC _D ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( cos ` x ) ) ) = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> -u ( sin ` x ) ) ) |
| 67 |
|
ax-1cn |
|- 1 e. CC |
| 68 |
|
dvrec |
|- ( 1 e. CC -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( 1 / ( y ^ 2 ) ) ) ) |
| 69 |
67 68
|
mp1i |
|- ( T. -> ( CC _D ( y e. ( CC \ { 0 } ) |-> ( 1 / y ) ) ) = ( y e. ( CC \ { 0 } ) |-> -u ( 1 / ( y ^ 2 ) ) ) ) |
| 70 |
|
oveq2 |
|- ( y = ( cos ` x ) -> ( 1 / y ) = ( 1 / ( cos ` x ) ) ) |
| 71 |
|
oveq1 |
|- ( y = ( cos ` x ) -> ( y ^ 2 ) = ( ( cos ` x ) ^ 2 ) ) |
| 72 |
71
|
oveq2d |
|- ( y = ( cos ` x ) -> ( 1 / ( y ^ 2 ) ) = ( 1 / ( ( cos ` x ) ^ 2 ) ) ) |
| 73 |
72
|
negeqd |
|- ( y = ( cos ` x ) -> -u ( 1 / ( y ^ 2 ) ) = -u ( 1 / ( ( cos ` x ) ^ 2 ) ) ) |
| 74 |
20 20 54 55 59 61 66 69 70 73
|
dvmptco |
|- ( T. -> ( CC _D ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( 1 / ( cos ` x ) ) ) ) = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) ) ) |
| 75 |
20 29 30 49 51 52 74
|
dvmptmul |
|- ( T. -> ( CC _D ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) x. ( 1 / ( cos ` x ) ) ) ) ) = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) ) ) |
| 76 |
75
|
mptru |
|- ( CC _D ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( sin ` x ) x. ( 1 / ( cos ` x ) ) ) ) ) = ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) ) |
| 77 |
|
ovex |
|- ( ( sin ` x ) / ( cos ` x ) ) e. _V |
| 78 |
77 1
|
dmmpti |
|- dom tan = ( `' cos " ( CC \ { 0 } ) ) |
| 79 |
78
|
eqcomi |
|- ( `' cos " ( CC \ { 0 } ) ) = dom tan |
| 80 |
8
|
sqcld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( cos ` x ) ^ 2 ) e. CC ) |
| 81 |
7
|
sqcld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( sin ` x ) ^ 2 ) e. CC ) |
| 82 |
|
sqne0 |
|- ( ( cos ` x ) e. CC -> ( ( ( cos ` x ) ^ 2 ) =/= 0 <-> ( cos ` x ) =/= 0 ) ) |
| 83 |
8 82
|
syl |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( cos ` x ) ^ 2 ) =/= 0 <-> ( cos ` x ) =/= 0 ) ) |
| 84 |
14 83
|
mpbird |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( cos ` x ) ^ 2 ) =/= 0 ) |
| 85 |
80 81 80 84
|
divdird |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( ( cos ` x ) ^ 2 ) + ( ( sin ` x ) ^ 2 ) ) / ( ( cos ` x ) ^ 2 ) ) = ( ( ( ( cos ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) + ( ( ( sin ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) ) ) |
| 86 |
80 81
|
addcomd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( cos ` x ) ^ 2 ) + ( ( sin ` x ) ^ 2 ) ) = ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) ) |
| 87 |
|
sincossq |
|- ( x e. CC -> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) |
| 88 |
6 87
|
syl |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( sin ` x ) ^ 2 ) + ( ( cos ` x ) ^ 2 ) ) = 1 ) |
| 89 |
86 88
|
eqtrd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( cos ` x ) ^ 2 ) + ( ( sin ` x ) ^ 2 ) ) = 1 ) |
| 90 |
89
|
oveq1d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( ( cos ` x ) ^ 2 ) + ( ( sin ` x ) ^ 2 ) ) / ( ( cos ` x ) ^ 2 ) ) = ( 1 / ( ( cos ` x ) ^ 2 ) ) ) |
| 91 |
85 90
|
eqtr3d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( ( cos ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) + ( ( ( sin ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) ) = ( 1 / ( ( cos ` x ) ^ 2 ) ) ) |
| 92 |
8 14
|
recidd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) = 1 ) |
| 93 |
80 84
|
dividd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( cos ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) = 1 ) |
| 94 |
92 93
|
eqtr4d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) = ( ( ( cos ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) ) |
| 95 |
7 7 80 84
|
div23d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( sin ` x ) x. ( sin ` x ) ) / ( ( cos ` x ) ^ 2 ) ) = ( ( ( sin ` x ) / ( ( cos ` x ) ^ 2 ) ) x. ( sin ` x ) ) ) |
| 96 |
7
|
sqvald |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( sin ` x ) ^ 2 ) = ( ( sin ` x ) x. ( sin ` x ) ) ) |
| 97 |
96
|
oveq1d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( sin ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) = ( ( ( sin ` x ) x. ( sin ` x ) ) / ( ( cos ` x ) ^ 2 ) ) ) |
| 98 |
80 84
|
reccld |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( 1 / ( ( cos ` x ) ^ 2 ) ) e. CC ) |
| 99 |
98 7
|
mul2negd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) = ( ( 1 / ( ( cos ` x ) ^ 2 ) ) x. ( sin ` x ) ) ) |
| 100 |
7 80 84
|
divrec2d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( sin ` x ) / ( ( cos ` x ) ^ 2 ) ) = ( ( 1 / ( ( cos ` x ) ^ 2 ) ) x. ( sin ` x ) ) ) |
| 101 |
99 100
|
eqtr4d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) = ( ( sin ` x ) / ( ( cos ` x ) ^ 2 ) ) ) |
| 102 |
101
|
oveq1d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) = ( ( ( sin ` x ) / ( ( cos ` x ) ^ 2 ) ) x. ( sin ` x ) ) ) |
| 103 |
95 97 102
|
3eqtr4rd |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) = ( ( ( sin ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) ) |
| 104 |
94 103
|
oveq12d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) = ( ( ( ( cos ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) + ( ( ( sin ` x ) ^ 2 ) / ( ( cos ` x ) ^ 2 ) ) ) ) |
| 105 |
|
2nn0 |
|- 2 e. NN0 |
| 106 |
|
expneg |
|- ( ( ( cos ` x ) e. CC /\ 2 e. NN0 ) -> ( ( cos ` x ) ^ -u 2 ) = ( 1 / ( ( cos ` x ) ^ 2 ) ) ) |
| 107 |
8 105 106
|
sylancl |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( cos ` x ) ^ -u 2 ) = ( 1 / ( ( cos ` x ) ^ 2 ) ) ) |
| 108 |
91 104 107
|
3eqtr4d |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) -> ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) = ( ( cos ` x ) ^ -u 2 ) ) |
| 109 |
108
|
rgen |
|- A. x e. ( `' cos " ( CC \ { 0 } ) ) ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) = ( ( cos ` x ) ^ -u 2 ) |
| 110 |
|
mpteq12 |
|- ( ( ( `' cos " ( CC \ { 0 } ) ) = dom tan /\ A. x e. ( `' cos " ( CC \ { 0 } ) ) ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) = ( ( cos ` x ) ^ -u 2 ) ) -> ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) ) = ( x e. dom tan |-> ( ( cos ` x ) ^ -u 2 ) ) ) |
| 111 |
79 109 110
|
mp2an |
|- ( x e. ( `' cos " ( CC \ { 0 } ) ) |-> ( ( ( cos ` x ) x. ( 1 / ( cos ` x ) ) ) + ( ( -u ( 1 / ( ( cos ` x ) ^ 2 ) ) x. -u ( sin ` x ) ) x. ( sin ` x ) ) ) ) = ( x e. dom tan |-> ( ( cos ` x ) ^ -u 2 ) ) |
| 112 |
18 76 111
|
3eqtri |
|- ( CC _D tan ) = ( x e. dom tan |-> ( ( cos ` x ) ^ -u 2 ) ) |