Metamath Proof Explorer


Theorem sinf

Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion sinf
|- sin : CC --> CC

Proof

Step Hyp Ref Expression
1 df-sin
 |-  sin = ( x e. CC |-> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) )
2 ax-icn
 |-  _i e. CC
3 mulcl
 |-  ( ( _i e. CC /\ x e. CC ) -> ( _i x. x ) e. CC )
4 2 3 mpan
 |-  ( x e. CC -> ( _i x. x ) e. CC )
5 efcl
 |-  ( ( _i x. x ) e. CC -> ( exp ` ( _i x. x ) ) e. CC )
6 4 5 syl
 |-  ( x e. CC -> ( exp ` ( _i x. x ) ) e. CC )
7 negicn
 |-  -u _i e. CC
8 mulcl
 |-  ( ( -u _i e. CC /\ x e. CC ) -> ( -u _i x. x ) e. CC )
9 7 8 mpan
 |-  ( x e. CC -> ( -u _i x. x ) e. CC )
10 efcl
 |-  ( ( -u _i x. x ) e. CC -> ( exp ` ( -u _i x. x ) ) e. CC )
11 9 10 syl
 |-  ( x e. CC -> ( exp ` ( -u _i x. x ) ) e. CC )
12 6 11 subcld
 |-  ( x e. CC -> ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC )
13 2mulicn
 |-  ( 2 x. _i ) e. CC
14 2muline0
 |-  ( 2 x. _i ) =/= 0
15 divcl
 |-  ( ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) e. CC )
16 13 14 15 mp3an23
 |-  ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) e. CC -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) e. CC )
17 12 16 syl
 |-  ( x e. CC -> ( ( ( exp ` ( _i x. x ) ) - ( exp ` ( -u _i x. x ) ) ) / ( 2 x. _i ) ) e. CC )
18 1 17 fmpti
 |-  sin : CC --> CC