Step |
Hyp |
Ref |
Expression |
1 |
|
itg2addnclem.1 |
|- L = { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } |
2 |
|
eqid |
|- { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } = { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } |
3 |
2
|
itg2val |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) ) |
4 |
1
|
supeq1i |
|- sup ( L , RR* , < ) = sup ( { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) |
5 |
|
xrltso |
|- < Or RR* |
6 |
5
|
a1i |
|- ( F : RR --> ( 0 [,] +oo ) -> < Or RR* ) |
7 |
|
simprr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ x = ( S.1 ` f ) ) ) -> x = ( S.1 ` f ) ) |
8 |
|
itg1cl |
|- ( f e. dom S.1 -> ( S.1 ` f ) e. RR ) |
9 |
8
|
rexrd |
|- ( f e. dom S.1 -> ( S.1 ` f ) e. RR* ) |
10 |
9
|
adantr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ x = ( S.1 ` f ) ) ) -> ( S.1 ` f ) e. RR* ) |
11 |
7 10
|
eqeltrd |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ x = ( S.1 ` f ) ) ) -> x e. RR* ) |
12 |
11
|
rexlimiva |
|- ( E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) -> x e. RR* ) |
13 |
12
|
abssi |
|- { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } C_ RR* |
14 |
|
supxrcl |
|- ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } C_ RR* -> sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) e. RR* ) |
15 |
13 14
|
mp1i |
|- ( F : RR --> ( 0 [,] +oo ) -> sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) e. RR* ) |
16 |
|
fveq1 |
|- ( g = f -> ( g ` z ) = ( f ` z ) ) |
17 |
16
|
eqeq1d |
|- ( g = f -> ( ( g ` z ) = 0 <-> ( f ` z ) = 0 ) ) |
18 |
16
|
oveq1d |
|- ( g = f -> ( ( g ` z ) + y ) = ( ( f ` z ) + y ) ) |
19 |
17 18
|
ifbieq2d |
|- ( g = f -> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) = if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) |
20 |
19
|
mpteq2dv |
|- ( g = f -> ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) = ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) ) |
21 |
20
|
breq1d |
|- ( g = f -> ( ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F ) ) |
22 |
21
|
rexbidv |
|- ( g = f -> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> E. y e. RR+ ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F ) ) |
23 |
|
fveq2 |
|- ( g = f -> ( S.1 ` g ) = ( S.1 ` f ) ) |
24 |
23
|
eqeq2d |
|- ( g = f -> ( x = ( S.1 ` g ) <-> x = ( S.1 ` f ) ) ) |
25 |
22 24
|
anbi12d |
|- ( g = f -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) <-> ( E. y e. RR+ ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` f ) ) ) ) |
26 |
25
|
cbvrexvw |
|- ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) <-> E. f e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` f ) ) ) |
27 |
|
breq2 |
|- ( 0 = if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) -> ( ( f ` z ) <_ 0 <-> ( f ` z ) <_ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) ) |
28 |
|
breq2 |
|- ( ( ( f ` z ) + y ) = if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) -> ( ( f ` z ) <_ ( ( f ` z ) + y ) <-> ( f ` z ) <_ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) ) |
29 |
|
id |
|- ( ( f ` z ) = 0 -> ( f ` z ) = 0 ) |
30 |
|
0le0 |
|- 0 <_ 0 |
31 |
29 30
|
eqbrtrdi |
|- ( ( f ` z ) = 0 -> ( f ` z ) <_ 0 ) |
32 |
31
|
adantl |
|- ( ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) /\ ( f ` z ) = 0 ) -> ( f ` z ) <_ 0 ) |
33 |
|
rpge0 |
|- ( y e. RR+ -> 0 <_ y ) |
34 |
33
|
ad2antlr |
|- ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) -> 0 <_ y ) |
35 |
|
i1ff |
|- ( f e. dom S.1 -> f : RR --> RR ) |
36 |
35
|
ffvelrnda |
|- ( ( f e. dom S.1 /\ z e. RR ) -> ( f ` z ) e. RR ) |
37 |
36
|
adantlr |
|- ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) -> ( f ` z ) e. RR ) |
38 |
|
rpre |
|- ( y e. RR+ -> y e. RR ) |
39 |
38
|
ad2antlr |
|- ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) -> y e. RR ) |
40 |
37 39
|
addge01d |
|- ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) -> ( 0 <_ y <-> ( f ` z ) <_ ( ( f ` z ) + y ) ) ) |
41 |
34 40
|
mpbid |
|- ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) -> ( f ` z ) <_ ( ( f ` z ) + y ) ) |
42 |
41
|
adantr |
|- ( ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) /\ -. ( f ` z ) = 0 ) -> ( f ` z ) <_ ( ( f ` z ) + y ) ) |
43 |
27 28 32 42
|
ifbothda |
|- ( ( ( f e. dom S.1 /\ y e. RR+ ) /\ z e. RR ) -> ( f ` z ) <_ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) |
44 |
43
|
adantlll |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( f ` z ) <_ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) |
45 |
35
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> f : RR --> RR ) |
46 |
45
|
ffvelrnda |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( f ` z ) e. RR ) |
47 |
46
|
rexrd |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( f ` z ) e. RR* ) |
48 |
|
0re |
|- 0 e. RR |
49 |
38
|
ad2antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> y e. RR ) |
50 |
46 49
|
readdcld |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( ( f ` z ) + y ) e. RR ) |
51 |
|
ifcl |
|- ( ( 0 e. RR /\ ( ( f ` z ) + y ) e. RR ) -> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) e. RR ) |
52 |
48 50 51
|
sylancr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) e. RR ) |
53 |
52
|
rexrd |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) e. RR* ) |
54 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
55 |
|
fss |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( 0 [,] +oo ) C_ RR* ) -> F : RR --> RR* ) |
56 |
54 55
|
mpan2 |
|- ( F : RR --> ( 0 [,] +oo ) -> F : RR --> RR* ) |
57 |
56
|
ad2antrr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> F : RR --> RR* ) |
58 |
57
|
ffvelrnda |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( F ` z ) e. RR* ) |
59 |
|
xrletr |
|- ( ( ( f ` z ) e. RR* /\ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) e. RR* /\ ( F ` z ) e. RR* ) -> ( ( ( f ` z ) <_ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) /\ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) <_ ( F ` z ) ) -> ( f ` z ) <_ ( F ` z ) ) ) |
60 |
47 53 58 59
|
syl3anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( ( ( f ` z ) <_ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) /\ if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) <_ ( F ` z ) ) -> ( f ` z ) <_ ( F ` z ) ) ) |
61 |
44 60
|
mpand |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) /\ z e. RR ) -> ( if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) <_ ( F ` z ) -> ( f ` z ) <_ ( F ` z ) ) ) |
62 |
61
|
ralimdva |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> ( A. z e. RR if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) <_ ( F ` z ) -> A. z e. RR ( f ` z ) <_ ( F ` z ) ) ) |
63 |
|
reex |
|- RR e. _V |
64 |
63
|
a1i |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> RR e. _V ) |
65 |
|
eqidd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) = ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) ) |
66 |
|
id |
|- ( F : RR --> ( 0 [,] +oo ) -> F : RR --> ( 0 [,] +oo ) ) |
67 |
66
|
feqmptd |
|- ( F : RR --> ( 0 [,] +oo ) -> F = ( z e. RR |-> ( F ` z ) ) ) |
68 |
67
|
ad2antrr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> F = ( z e. RR |-> ( F ` z ) ) ) |
69 |
64 52 58 65 68
|
ofrfval2 |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> ( ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F <-> A. z e. RR if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) <_ ( F ` z ) ) ) |
70 |
35
|
feqmptd |
|- ( f e. dom S.1 -> f = ( z e. RR |-> ( f ` z ) ) ) |
71 |
70
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> f = ( z e. RR |-> ( f ` z ) ) ) |
72 |
64 46 58 71 68
|
ofrfval2 |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> ( f oR <_ F <-> A. z e. RR ( f ` z ) <_ ( F ` z ) ) ) |
73 |
62 69 72
|
3imtr4d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ y e. RR+ ) -> ( ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F -> f oR <_ F ) ) |
74 |
73
|
rexlimdva |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) -> ( E. y e. RR+ ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F -> f oR <_ F ) ) |
75 |
74
|
anim1d |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` f ) ) -> ( f oR <_ F /\ x = ( S.1 ` f ) ) ) ) |
76 |
75
|
reximdva |
|- ( F : RR --> ( 0 [,] +oo ) -> ( E. f e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( f ` z ) = 0 , 0 , ( ( f ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` f ) ) -> E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) ) ) |
77 |
26 76
|
syl5bi |
|- ( F : RR --> ( 0 [,] +oo ) -> ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) -> E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) ) ) |
78 |
77
|
ss2abdv |
|- ( F : RR --> ( 0 [,] +oo ) -> { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } C_ { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } ) |
79 |
78
|
sseld |
|- ( F : RR --> ( 0 [,] +oo ) -> ( b e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } -> b e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } ) ) |
80 |
|
simp3r |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 /\ ( f oR <_ F /\ x = ( S.1 ` f ) ) ) -> x = ( S.1 ` f ) ) |
81 |
9
|
3ad2ant2 |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 /\ ( f oR <_ F /\ x = ( S.1 ` f ) ) ) -> ( S.1 ` f ) e. RR* ) |
82 |
80 81
|
eqeltrd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 /\ ( f oR <_ F /\ x = ( S.1 ` f ) ) ) -> x e. RR* ) |
83 |
82
|
rexlimdv3a |
|- ( F : RR --> ( 0 [,] +oo ) -> ( E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) -> x e. RR* ) ) |
84 |
83
|
abssdv |
|- ( F : RR --> ( 0 [,] +oo ) -> { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } C_ RR* ) |
85 |
|
xrsupss |
|- ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } C_ RR* -> E. a e. RR* ( A. b e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } -. a < b /\ A. b e. RR* ( b < a -> E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s ) ) ) |
86 |
84 85
|
syl |
|- ( F : RR --> ( 0 [,] +oo ) -> E. a e. RR* ( A. b e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } -. a < b /\ A. b e. RR* ( b < a -> E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s ) ) ) |
87 |
6 86
|
supub |
|- ( F : RR --> ( 0 [,] +oo ) -> ( b e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } -> -. sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) < b ) ) |
88 |
79 87
|
syld |
|- ( F : RR --> ( 0 [,] +oo ) -> ( b e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } -> -. sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) < b ) ) |
89 |
88
|
imp |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } ) -> -. sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) < b ) |
90 |
|
supxrlub |
|- ( ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } C_ RR* /\ b e. RR* ) -> ( b < sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) <-> E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s ) ) |
91 |
13 90
|
mpan |
|- ( b e. RR* -> ( b < sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) <-> E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s ) ) |
92 |
91
|
adantl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> ( b < sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) <-> E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s ) ) |
93 |
|
simprrr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> s = ( S.1 ` f ) ) |
94 |
93
|
breq2d |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( b < s <-> b < ( S.1 ` f ) ) ) |
95 |
|
simplll |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) -> F : RR --> ( 0 [,] +oo ) ) |
96 |
|
i1f0 |
|- ( RR X. { 0 } ) e. dom S.1 |
97 |
|
2rp |
|- 2 e. RR+ |
98 |
97
|
ne0ii |
|- RR+ =/= (/) |
99 |
|
ffvelrn |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ z e. RR ) -> ( F ` z ) e. ( 0 [,] +oo ) ) |
100 |
|
elxrge0 |
|- ( ( F ` z ) e. ( 0 [,] +oo ) <-> ( ( F ` z ) e. RR* /\ 0 <_ ( F ` z ) ) ) |
101 |
99 100
|
sylib |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ z e. RR ) -> ( ( F ` z ) e. RR* /\ 0 <_ ( F ` z ) ) ) |
102 |
101
|
simprd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ z e. RR ) -> 0 <_ ( F ` z ) ) |
103 |
102
|
ralrimiva |
|- ( F : RR --> ( 0 [,] +oo ) -> A. z e. RR 0 <_ ( F ` z ) ) |
104 |
63
|
a1i |
|- ( F : RR --> ( 0 [,] +oo ) -> RR e. _V ) |
105 |
|
c0ex |
|- 0 e. _V |
106 |
105
|
a1i |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ z e. RR ) -> 0 e. _V ) |
107 |
|
eqidd |
|- ( F : RR --> ( 0 [,] +oo ) -> ( z e. RR |-> 0 ) = ( z e. RR |-> 0 ) ) |
108 |
104 106 99 107 67
|
ofrfval2 |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( z e. RR |-> 0 ) oR <_ F <-> A. z e. RR 0 <_ ( F ` z ) ) ) |
109 |
103 108
|
mpbird |
|- ( F : RR --> ( 0 [,] +oo ) -> ( z e. RR |-> 0 ) oR <_ F ) |
110 |
109
|
ralrimivw |
|- ( F : RR --> ( 0 [,] +oo ) -> A. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) |
111 |
|
r19.2z |
|- ( ( RR+ =/= (/) /\ A. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) -> E. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) |
112 |
98 110 111
|
sylancr |
|- ( F : RR --> ( 0 [,] +oo ) -> E. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) |
113 |
|
fveq2 |
|- ( g = ( RR X. { 0 } ) -> ( S.1 ` g ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
114 |
|
itg10 |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
115 |
113 114
|
eqtr2di |
|- ( g = ( RR X. { 0 } ) -> 0 = ( S.1 ` g ) ) |
116 |
115
|
biantrud |
|- ( g = ( RR X. { 0 } ) -> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) ) ) |
117 |
|
fveq1 |
|- ( g = ( RR X. { 0 } ) -> ( g ` z ) = ( ( RR X. { 0 } ) ` z ) ) |
118 |
105
|
fvconst2 |
|- ( z e. RR -> ( ( RR X. { 0 } ) ` z ) = 0 ) |
119 |
117 118
|
sylan9eq |
|- ( ( g = ( RR X. { 0 } ) /\ z e. RR ) -> ( g ` z ) = 0 ) |
120 |
|
iftrue |
|- ( ( g ` z ) = 0 -> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) = 0 ) |
121 |
119 120
|
syl |
|- ( ( g = ( RR X. { 0 } ) /\ z e. RR ) -> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) = 0 ) |
122 |
121
|
mpteq2dva |
|- ( g = ( RR X. { 0 } ) -> ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) = ( z e. RR |-> 0 ) ) |
123 |
122
|
breq1d |
|- ( g = ( RR X. { 0 } ) -> ( ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> ( z e. RR |-> 0 ) oR <_ F ) ) |
124 |
123
|
rexbidv |
|- ( g = ( RR X. { 0 } ) -> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> E. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) ) |
125 |
116 124
|
bitr3d |
|- ( g = ( RR X. { 0 } ) -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) <-> E. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) ) |
126 |
125
|
rspcev |
|- ( ( ( RR X. { 0 } ) e. dom S.1 /\ E. y e. RR+ ( z e. RR |-> 0 ) oR <_ F ) -> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) ) |
127 |
96 112 126
|
sylancr |
|- ( F : RR --> ( 0 [,] +oo ) -> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) ) |
128 |
|
id |
|- ( b = -oo -> b = -oo ) |
129 |
|
mnflt |
|- ( 0 e. RR -> -oo < 0 ) |
130 |
48 129
|
mp1i |
|- ( b = -oo -> -oo < 0 ) |
131 |
128 130
|
eqbrtrd |
|- ( b = -oo -> b < 0 ) |
132 |
|
eqeq1 |
|- ( a = 0 -> ( a = ( S.1 ` g ) <-> 0 = ( S.1 ` g ) ) ) |
133 |
132
|
anbi2d |
|- ( a = 0 -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) <-> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) ) ) |
134 |
133
|
rexbidv |
|- ( a = 0 -> ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) <-> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) ) ) |
135 |
|
breq2 |
|- ( a = 0 -> ( b < a <-> b < 0 ) ) |
136 |
134 135
|
anbi12d |
|- ( a = 0 -> ( ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) <-> ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) /\ b < 0 ) ) ) |
137 |
105 136
|
spcev |
|- ( ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) /\ b < 0 ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
138 |
127 131 137
|
syl2an |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b = -oo ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
139 |
95 138
|
sylan |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b = -oo ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
140 |
|
simp-4r |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> b e. RR* ) |
141 |
8
|
adantr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> ( S.1 ` f ) e. RR ) |
142 |
141
|
ad3antlr |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> ( S.1 ` f ) e. RR ) |
143 |
|
simpllr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) -> b e. RR* ) |
144 |
|
ngtmnft |
|- ( b e. RR* -> ( b = -oo <-> -. -oo < b ) ) |
145 |
144
|
biimprd |
|- ( b e. RR* -> ( -. -oo < b -> b = -oo ) ) |
146 |
145
|
necon1ad |
|- ( b e. RR* -> ( b =/= -oo -> -oo < b ) ) |
147 |
146
|
imp |
|- ( ( b e. RR* /\ b =/= -oo ) -> -oo < b ) |
148 |
143 147
|
sylan |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> -oo < b ) |
149 |
|
simpr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> b e. RR* ) |
150 |
9
|
adantr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> ( S.1 ` f ) e. RR* ) |
151 |
149 150
|
anim12i |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( b e. RR* /\ ( S.1 ` f ) e. RR* ) ) |
152 |
|
xrltle |
|- ( ( b e. RR* /\ ( S.1 ` f ) e. RR* ) -> ( b < ( S.1 ` f ) -> b <_ ( S.1 ` f ) ) ) |
153 |
152
|
imp |
|- ( ( ( b e. RR* /\ ( S.1 ` f ) e. RR* ) /\ b < ( S.1 ` f ) ) -> b <_ ( S.1 ` f ) ) |
154 |
151 153
|
sylan |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) -> b <_ ( S.1 ` f ) ) |
155 |
154
|
adantr |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> b <_ ( S.1 ` f ) ) |
156 |
|
xrre |
|- ( ( ( b e. RR* /\ ( S.1 ` f ) e. RR ) /\ ( -oo < b /\ b <_ ( S.1 ` f ) ) ) -> b e. RR ) |
157 |
140 142 148 155 156
|
syl22anc |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> b e. RR ) |
158 |
127
|
ad3antrrr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ 0 = ( S.1 ` g ) ) ) |
159 |
|
simplrl |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> b < ( S.1 ` f ) ) |
160 |
|
simplrl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> f e. dom S.1 ) |
161 |
|
simpl |
|- ( ( f e. dom S.1 /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> f e. dom S.1 ) |
162 |
|
cnvimass |
|- ( `' f " ( ran f \ { 0 } ) ) C_ dom f |
163 |
162 35
|
fssdm |
|- ( f e. dom S.1 -> ( `' f " ( ran f \ { 0 } ) ) C_ RR ) |
164 |
163
|
adantr |
|- ( ( f e. dom S.1 /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> ( `' f " ( ran f \ { 0 } ) ) C_ RR ) |
165 |
|
simpr |
|- ( ( f e. dom S.1 /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) |
166 |
|
fdm |
|- ( f : RR --> RR -> dom f = RR ) |
167 |
166
|
eqcomd |
|- ( f : RR --> RR -> RR = dom f ) |
168 |
|
ffun |
|- ( f : RR --> RR -> Fun f ) |
169 |
|
difpreima |
|- ( Fun f -> ( `' f " ( ran f \ { 0 } ) ) = ( ( `' f " ran f ) \ ( `' f " { 0 } ) ) ) |
170 |
168 169
|
syl |
|- ( f : RR --> RR -> ( `' f " ( ran f \ { 0 } ) ) = ( ( `' f " ran f ) \ ( `' f " { 0 } ) ) ) |
171 |
|
cnvimarndm |
|- ( `' f " ran f ) = dom f |
172 |
171
|
difeq1i |
|- ( ( `' f " ran f ) \ ( `' f " { 0 } ) ) = ( dom f \ ( `' f " { 0 } ) ) |
173 |
170 172
|
eqtrdi |
|- ( f : RR --> RR -> ( `' f " ( ran f \ { 0 } ) ) = ( dom f \ ( `' f " { 0 } ) ) ) |
174 |
167 173
|
difeq12d |
|- ( f : RR --> RR -> ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) = ( dom f \ ( dom f \ ( `' f " { 0 } ) ) ) ) |
175 |
|
cnvimass |
|- ( `' f " { 0 } ) C_ dom f |
176 |
|
dfss4 |
|- ( ( `' f " { 0 } ) C_ dom f <-> ( dom f \ ( dom f \ ( `' f " { 0 } ) ) ) = ( `' f " { 0 } ) ) |
177 |
175 176
|
mpbi |
|- ( dom f \ ( dom f \ ( `' f " { 0 } ) ) ) = ( `' f " { 0 } ) |
178 |
174 177
|
eqtrdi |
|- ( f : RR --> RR -> ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) = ( `' f " { 0 } ) ) |
179 |
178
|
eleq2d |
|- ( f : RR --> RR -> ( z e. ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) <-> z e. ( `' f " { 0 } ) ) ) |
180 |
|
ffn |
|- ( f : RR --> RR -> f Fn RR ) |
181 |
|
fniniseg |
|- ( f Fn RR -> ( z e. ( `' f " { 0 } ) <-> ( z e. RR /\ ( f ` z ) = 0 ) ) ) |
182 |
|
simpr |
|- ( ( z e. RR /\ ( f ` z ) = 0 ) -> ( f ` z ) = 0 ) |
183 |
181 182
|
syl6bi |
|- ( f Fn RR -> ( z e. ( `' f " { 0 } ) -> ( f ` z ) = 0 ) ) |
184 |
180 183
|
syl |
|- ( f : RR --> RR -> ( z e. ( `' f " { 0 } ) -> ( f ` z ) = 0 ) ) |
185 |
179 184
|
sylbid |
|- ( f : RR --> RR -> ( z e. ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) -> ( f ` z ) = 0 ) ) |
186 |
35 185
|
syl |
|- ( f e. dom S.1 -> ( z e. ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) -> ( f ` z ) = 0 ) ) |
187 |
186
|
imp |
|- ( ( f e. dom S.1 /\ z e. ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) ) -> ( f ` z ) = 0 ) |
188 |
187
|
adantlr |
|- ( ( ( f e. dom S.1 /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) /\ z e. ( RR \ ( `' f " ( ran f \ { 0 } ) ) ) ) -> ( f ` z ) = 0 ) |
189 |
161 164 165 188
|
itg10a |
|- ( ( f e. dom S.1 /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> ( S.1 ` f ) = 0 ) |
190 |
160 189
|
sylan |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> ( S.1 ` f ) = 0 ) |
191 |
159 190
|
breqtrd |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> b < 0 ) |
192 |
158 191 137
|
syl2anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) = 0 ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
193 |
|
simprl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> f e. dom S.1 ) |
194 |
|
simpr |
|- ( ( b < ( S.1 ` f ) /\ b e. RR ) -> b e. RR ) |
195 |
193 194
|
anim12i |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> ( f e. dom S.1 /\ b e. RR ) ) |
196 |
63
|
a1i |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> RR e. _V ) |
197 |
|
fvex |
|- ( f ` u ) e. _V |
198 |
197
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( f ` u ) e. _V ) |
199 |
|
ovex |
|- ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. _V |
200 |
199 105
|
ifex |
|- if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) e. _V |
201 |
200
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) e. _V ) |
202 |
35
|
feqmptd |
|- ( f e. dom S.1 -> f = ( u e. RR |-> ( f ` u ) ) ) |
203 |
202
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> f = ( u e. RR |-> ( f ` u ) ) ) |
204 |
|
eqidd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) |
205 |
196 198 201 203 204
|
offval2 |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) = ( u e. RR |-> ( ( f ` u ) - if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
206 |
|
ovif2 |
|- ( ( f ` u ) - if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) = if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` u ) - 0 ) ) |
207 |
171 166
|
eqtrid |
|- ( f : RR --> RR -> ( `' f " ran f ) = RR ) |
208 |
207
|
difeq1d |
|- ( f : RR --> RR -> ( ( `' f " ran f ) \ ( `' f " { 0 } ) ) = ( RR \ ( `' f " { 0 } ) ) ) |
209 |
170 208
|
eqtrd |
|- ( f : RR --> RR -> ( `' f " ( ran f \ { 0 } ) ) = ( RR \ ( `' f " { 0 } ) ) ) |
210 |
209
|
eleq2d |
|- ( f : RR --> RR -> ( u e. ( `' f " ( ran f \ { 0 } ) ) <-> u e. ( RR \ ( `' f " { 0 } ) ) ) ) |
211 |
35 210
|
syl |
|- ( f e. dom S.1 -> ( u e. ( `' f " ( ran f \ { 0 } ) ) <-> u e. ( RR \ ( `' f " { 0 } ) ) ) ) |
212 |
211
|
ad3antrrr |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( u e. ( `' f " ( ran f \ { 0 } ) ) <-> u e. ( RR \ ( `' f " { 0 } ) ) ) ) |
213 |
|
simpr |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> u e. RR ) |
214 |
213
|
biantrurd |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( -. u e. ( `' f " { 0 } ) <-> ( u e. RR /\ -. u e. ( `' f " { 0 } ) ) ) ) |
215 |
|
eldif |
|- ( u e. ( RR \ ( `' f " { 0 } ) ) <-> ( u e. RR /\ -. u e. ( `' f " { 0 } ) ) ) |
216 |
214 215
|
bitr4di |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( -. u e. ( `' f " { 0 } ) <-> u e. ( RR \ ( `' f " { 0 } ) ) ) ) |
217 |
212 216
|
bitr4d |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( u e. ( `' f " ( ran f \ { 0 } ) ) <-> -. u e. ( `' f " { 0 } ) ) ) |
218 |
217
|
con2bid |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( u e. ( `' f " { 0 } ) <-> -. u e. ( `' f " ( ran f \ { 0 } ) ) ) ) |
219 |
|
fniniseg |
|- ( f Fn RR -> ( u e. ( `' f " { 0 } ) <-> ( u e. RR /\ ( f ` u ) = 0 ) ) ) |
220 |
35 180 219
|
3syl |
|- ( f e. dom S.1 -> ( u e. ( `' f " { 0 } ) <-> ( u e. RR /\ ( f ` u ) = 0 ) ) ) |
221 |
220
|
ad3antrrr |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( u e. ( `' f " { 0 } ) <-> ( u e. RR /\ ( f ` u ) = 0 ) ) ) |
222 |
218 221
|
bitr3d |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( -. u e. ( `' f " ( ran f \ { 0 } ) ) <-> ( u e. RR /\ ( f ` u ) = 0 ) ) ) |
223 |
|
oveq1 |
|- ( ( f ` u ) = 0 -> ( ( f ` u ) - 0 ) = ( 0 - 0 ) ) |
224 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
225 |
223 224
|
eqtrdi |
|- ( ( f ` u ) = 0 -> ( ( f ` u ) - 0 ) = 0 ) |
226 |
225
|
adantl |
|- ( ( u e. RR /\ ( f ` u ) = 0 ) -> ( ( f ` u ) - 0 ) = 0 ) |
227 |
222 226
|
syl6bi |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( -. u e. ( `' f " ( ran f \ { 0 } ) ) -> ( ( f ` u ) - 0 ) = 0 ) ) |
228 |
227
|
imp |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) /\ -. u e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` u ) - 0 ) = 0 ) |
229 |
228
|
ifeq2da |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` u ) - 0 ) ) = if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
230 |
206 229
|
eqtrid |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( ( f ` u ) - if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) = if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
231 |
230
|
mpteq2dva |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> ( ( f ` u ) - if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
232 |
205 231
|
eqtrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
233 |
|
simpll |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> f e. dom S.1 ) |
234 |
199
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. _V ) |
235 |
|
1ex |
|- 1 e. _V |
236 |
235 105
|
ifex |
|- if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) e. _V |
237 |
236
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ u e. RR ) -> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) e. _V ) |
238 |
|
fconstmpt |
|- ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) = ( u e. RR |-> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) |
239 |
238
|
a1i |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) = ( u e. RR |-> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
240 |
|
eqidd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) |
241 |
196 234 237 239 240
|
offval2 |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( u e. RR |-> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) |
242 |
|
ovif2 |
|- ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 1 ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 0 ) ) |
243 |
|
resubcl |
|- ( ( ( S.1 ` f ) e. RR /\ b e. RR ) -> ( ( S.1 ` f ) - b ) e. RR ) |
244 |
8 243
|
sylan |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( S.1 ` f ) - b ) e. RR ) |
245 |
244
|
adantr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( S.1 ` f ) - b ) e. RR ) |
246 |
|
2re |
|- 2 e. RR |
247 |
|
i1fima |
|- ( f e. dom S.1 -> ( `' f " ( ran f \ { 0 } ) ) e. dom vol ) |
248 |
|
mblvol |
|- ( ( `' f " ( ran f \ { 0 } ) ) e. dom vol -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) = ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
249 |
247 248
|
syl |
|- ( f e. dom S.1 -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) = ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
250 |
|
neldifsn |
|- -. 0 e. ( ran f \ { 0 } ) |
251 |
|
i1fima2 |
|- ( ( f e. dom S.1 /\ -. 0 e. ( ran f \ { 0 } ) ) -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) |
252 |
250 251
|
mpan2 |
|- ( f e. dom S.1 -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) |
253 |
249 252
|
eqeltrrd |
|- ( f e. dom S.1 -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) |
254 |
|
remulcl |
|- ( ( 2 e. RR /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. RR ) |
255 |
246 253 254
|
sylancr |
|- ( f e. dom S.1 -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. RR ) |
256 |
255
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. RR ) |
257 |
|
2cnd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 2 e. CC ) |
258 |
253
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) |
259 |
258
|
recnd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. CC ) |
260 |
|
2ne0 |
|- 2 =/= 0 |
261 |
260
|
a1i |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 2 =/= 0 ) |
262 |
|
simpr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) |
263 |
257 259 261 262
|
mulne0d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) =/= 0 ) |
264 |
245 256 263
|
redivcld |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. RR ) |
265 |
264
|
recnd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. CC ) |
266 |
265
|
mulid1d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 1 ) = ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) |
267 |
265
|
mul01d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 0 ) = 0 ) |
268 |
266 267
|
ifeq12d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 1 ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 0 ) ) = if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) |
269 |
242 268
|
eqtrid |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) |
270 |
269
|
mpteq2dv |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) |
271 |
241 270
|
eqtrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) |
272 |
|
eqid |
|- ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) |
273 |
272
|
i1f1 |
|- ( ( ( `' f " ( ran f \ { 0 } ) ) e. dom vol /\ ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) e. dom S.1 ) |
274 |
247 252 273
|
syl2anc |
|- ( f e. dom S.1 -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) e. dom S.1 ) |
275 |
274
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) e. dom S.1 ) |
276 |
275 264
|
i1fmulc |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) e. dom S.1 ) |
277 |
271 276
|
eqeltrrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
278 |
|
i1fsub |
|- ( ( f e. dom S.1 /\ ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. dom S.1 ) -> ( f oF - ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 ) |
279 |
233 277 278
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 ) |
280 |
232 279
|
eqeltrrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
281 |
|
iftrue |
|- ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
282 |
|
iftrue |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
283 |
282
|
breq2d |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) |
284 |
283 282
|
ifbieq1d |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
285 |
|
iftrue |
|- ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
286 |
284 285
|
sylan9eqr |
|- ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
287 |
281 286
|
eqtr4d |
|- ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
288 |
|
iffalse |
|- ( -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
289 |
|
ianor |
|- ( -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) <-> ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) \/ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) ) |
290 |
283
|
ifbid |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
291 |
|
iffalse |
|- ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
292 |
290 291
|
sylan9eqr |
|- ( ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
293 |
292
|
ex |
|- ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> ( z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
294 |
|
iffalse |
|- ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
295 |
|
eqid |
|- 0 = 0 |
296 |
|
eqeq1 |
|- ( if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) -> ( if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 <-> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
297 |
|
eqeq1 |
|- ( 0 = if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) -> ( 0 = 0 <-> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
298 |
296 297
|
ifboth |
|- ( ( if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 /\ 0 = 0 ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
299 |
294 295 298
|
sylancl |
|- ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
300 |
293 299
|
pm2.61d1 |
|- ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
301 |
300 299
|
jaoi |
|- ( ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) \/ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
302 |
289 301
|
sylbi |
|- ( -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
303 |
288 302
|
eqtr4d |
|- ( -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
304 |
287 303
|
pm2.61i |
|- if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) |
305 |
|
eleq1w |
|- ( u = z -> ( u e. ( `' f " ( ran f \ { 0 } ) ) <-> z e. ( `' f " ( ran f \ { 0 } ) ) ) ) |
306 |
|
fveq2 |
|- ( u = z -> ( f ` u ) = ( f ` z ) ) |
307 |
306
|
oveq1d |
|- ( u = z -> ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
308 |
305 307
|
ifbieq1d |
|- ( u = z -> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
309 |
|
eqid |
|- ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) = ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
310 |
|
ovex |
|- ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) e. _V |
311 |
310 105
|
ifex |
|- if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) e. _V |
312 |
308 309 311
|
fvmpt |
|- ( z e. RR -> ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) = if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
313 |
312
|
breq2d |
|- ( z e. RR -> ( 0 <_ ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) <-> 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
314 |
313 312
|
ifbieq1d |
|- ( z e. RR -> if ( 0 <_ ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) , ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) , 0 ) = if ( 0 <_ if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
315 |
304 314
|
eqtr4id |
|- ( z e. RR -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 <_ ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) , ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) , 0 ) ) |
316 |
315
|
mpteq2ia |
|- ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) = ( z e. RR |-> if ( 0 <_ ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) , ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) , 0 ) ) |
317 |
316
|
i1fpos |
|- ( ( u e. RR |-> if ( u e. ( `' f " ( ran f \ { 0 } ) ) , ( ( f ` u ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 -> ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
318 |
280 317
|
syl |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
319 |
195 318
|
sylan |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
320 |
195 264
|
sylan |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. RR ) |
321 |
8
|
ad2antrl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( S.1 ` f ) e. RR ) |
322 |
321 194 243
|
syl2an |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> ( ( S.1 ` f ) - b ) e. RR ) |
323 |
322
|
adantr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( S.1 ` f ) - b ) e. RR ) |
324 |
255
|
adantr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. RR ) |
325 |
324
|
ad3antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. RR ) |
326 |
|
simprl |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> b < ( S.1 ` f ) ) |
327 |
|
simprr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> b e. RR ) |
328 |
141
|
ad2antlr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> ( S.1 ` f ) e. RR ) |
329 |
327 328
|
posdifd |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> ( b < ( S.1 ` f ) <-> 0 < ( ( S.1 ` f ) - b ) ) ) |
330 |
326 329
|
mpbid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> 0 < ( ( S.1 ` f ) - b ) ) |
331 |
330
|
adantr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 0 < ( ( S.1 ` f ) - b ) ) |
332 |
253
|
adantr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) |
333 |
332
|
ad3antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) |
334 |
|
mblss |
|- ( ( `' f " ( ran f \ { 0 } ) ) e. dom vol -> ( `' f " ( ran f \ { 0 } ) ) C_ RR ) |
335 |
|
ovolge0 |
|- ( ( `' f " ( ran f \ { 0 } ) ) C_ RR -> 0 <_ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
336 |
247 334 335
|
3syl |
|- ( f e. dom S.1 -> 0 <_ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
337 |
|
ltlen |
|- ( ( 0 e. RR /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) -> ( 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) <-> ( 0 <_ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) ) ) |
338 |
48 253 337
|
sylancr |
|- ( f e. dom S.1 -> ( 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) <-> ( 0 <_ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) ) ) |
339 |
338
|
biimprd |
|- ( f e. dom S.1 -> ( ( 0 <_ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
340 |
336 339
|
mpand |
|- ( f e. dom S.1 -> ( ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 -> 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
341 |
340
|
ad2antrl |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 -> 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
342 |
341
|
imp |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
343 |
342
|
adantlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
344 |
|
2pos |
|- 0 < 2 |
345 |
|
mulgt0 |
|- ( ( ( 2 e. RR /\ 0 < 2 ) /\ ( ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR /\ 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) -> 0 < ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
346 |
246 344 345
|
mpanl12 |
|- ( ( ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR /\ 0 < ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) -> 0 < ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
347 |
333 343 346
|
syl2anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 0 < ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
348 |
323 325 331 347
|
divgt0d |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> 0 < ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) |
349 |
320 348
|
elrpd |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. RR+ ) |
350 |
|
simprl |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> f oR <_ F ) |
351 |
350
|
ad3antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> f oR <_ F ) |
352 |
|
ffn |
|- ( F : RR --> ( 0 [,] +oo ) -> F Fn RR ) |
353 |
35 180
|
syl |
|- ( f e. dom S.1 -> f Fn RR ) |
354 |
353
|
adantr |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> f Fn RR ) |
355 |
|
simpr |
|- ( ( F Fn RR /\ f Fn RR ) -> f Fn RR ) |
356 |
|
simpl |
|- ( ( F Fn RR /\ f Fn RR ) -> F Fn RR ) |
357 |
63
|
a1i |
|- ( ( F Fn RR /\ f Fn RR ) -> RR e. _V ) |
358 |
|
inidm |
|- ( RR i^i RR ) = RR |
359 |
|
eqidd |
|- ( ( ( F Fn RR /\ f Fn RR ) /\ z e. RR ) -> ( f ` z ) = ( f ` z ) ) |
360 |
|
eqidd |
|- ( ( ( F Fn RR /\ f Fn RR ) /\ z e. RR ) -> ( F ` z ) = ( F ` z ) ) |
361 |
355 356 357 357 358 359 360
|
ofrfval |
|- ( ( F Fn RR /\ f Fn RR ) -> ( f oR <_ F <-> A. z e. RR ( f ` z ) <_ ( F ` z ) ) ) |
362 |
352 354 361
|
syl2an |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( f oR <_ F <-> A. z e. RR ( f ` z ) <_ ( F ` z ) ) ) |
363 |
362
|
ad2antrr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oR <_ F <-> A. z e. RR ( f ` z ) <_ ( F ` z ) ) ) |
364 |
|
simpl |
|- ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> f e. dom S.1 ) |
365 |
364
|
anim2i |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) ) |
366 |
365 194
|
anim12i |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) ) |
367 |
|
breq1 |
|- ( 0 = if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( 0 <_ ( F ` z ) <-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
368 |
|
breq1 |
|- ( ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) <-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
369 |
|
simplll |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> F : RR --> ( 0 [,] +oo ) ) |
370 |
369
|
ffvelrnda |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( F ` z ) e. ( 0 [,] +oo ) ) |
371 |
370 100
|
sylib |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( F ` z ) e. RR* /\ 0 <_ ( F ` z ) ) ) |
372 |
371
|
simprd |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> 0 <_ ( F ` z ) ) |
373 |
372
|
ad2antrr |
|- ( ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) /\ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) -> 0 <_ ( F ` z ) ) |
374 |
|
oveq1 |
|- ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
375 |
374
|
breq1d |
|- ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) -> ( ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) <-> ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) ) |
376 |
|
oveq1 |
|- ( 0 = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) -> ( 0 + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
377 |
376
|
breq1d |
|- ( 0 = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) -> ( ( 0 + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) <-> ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) ) |
378 |
35
|
ad3antlr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> f : RR --> RR ) |
379 |
378
|
ffvelrnda |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( f ` z ) e. RR ) |
380 |
379
|
recnd |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( f ` z ) e. CC ) |
381 |
244
|
recnd |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( S.1 ` f ) - b ) e. CC ) |
382 |
381
|
adantr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( S.1 ` f ) - b ) e. CC ) |
383 |
255
|
recnd |
|- ( f e. dom S.1 -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. CC ) |
384 |
383
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) e. CC ) |
385 |
382 384 263
|
divcld |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. CC ) |
386 |
385
|
adantlll |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. CC ) |
387 |
386
|
adantr |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. CC ) |
388 |
380 387
|
npcand |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = ( f ` z ) ) |
389 |
388
|
adantr |
|- ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = ( f ` z ) ) |
390 |
|
simpr |
|- ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) -> ( f ` z ) <_ ( F ` z ) ) |
391 |
389 390
|
eqbrtrd |
|- ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) |
392 |
391
|
ad2antrr |
|- ( ( ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) /\ -. if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) /\ ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) |
393 |
288
|
pm2.24d |
|- ( -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( -. if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 -> ( 0 + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) ) |
394 |
393
|
impcom |
|- ( ( -. if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 /\ -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) ) -> ( 0 + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) |
395 |
394
|
adantll |
|- ( ( ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) /\ -. if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) /\ -. ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) ) -> ( 0 + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) |
396 |
375 377 392 395
|
ifbothda |
|- ( ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) /\ -. if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) -> ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( F ` z ) ) |
397 |
367 368 373 396
|
ifbothda |
|- ( ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ ( f ` z ) <_ ( F ` z ) ) -> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) |
398 |
397
|
ex |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ f e. dom S.1 ) /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) <_ ( F ` z ) -> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
399 |
366 398
|
sylanl1 |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) <_ ( F ` z ) -> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
400 |
399
|
ralimdva |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( A. z e. RR ( f ` z ) <_ ( F ` z ) -> A. z e. RR if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
401 |
363 400
|
sylbid |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oR <_ F -> A. z e. RR if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
402 |
351 401
|
mpd |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> A. z e. RR if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) |
403 |
|
ovex |
|- ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) e. _V |
404 |
105 403
|
ifex |
|- if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) e. _V |
405 |
404
|
a1i |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ z e. RR ) -> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) e. _V ) |
406 |
|
eqidd |
|- ( F : RR --> ( 0 [,] +oo ) -> ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) = ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) ) |
407 |
104 405 99 406 67
|
ofrfval2 |
|- ( F : RR --> ( 0 [,] +oo ) -> ( ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) oR <_ F <-> A. z e. RR if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
408 |
407
|
ad3antrrr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) oR <_ F <-> A. z e. RR if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) <_ ( F ` z ) ) ) |
409 |
402 408
|
mpbird |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) oR <_ F ) |
410 |
|
oveq2 |
|- ( y = ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) -> ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) = ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
411 |
410
|
ifeq2d |
|- ( y = ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) -> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) = if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) |
412 |
411
|
mpteq2dv |
|- ( y = ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) -> ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) = ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) ) |
413 |
412
|
breq1d |
|- ( y = ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) -> ( ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F <-> ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) oR <_ F ) ) |
414 |
413
|
rspcev |
|- ( ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. RR+ /\ ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) oR <_ F ) -> E. y e. RR+ ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F ) |
415 |
349 409 414
|
syl2anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> E. y e. RR+ ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F ) |
416 |
|
fveq2 |
|- ( ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) = g -> ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) |
417 |
416
|
eqcoms |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) |
418 |
417
|
biantrud |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) ) ) |
419 |
|
nfmpt1 |
|- F/_ z ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
420 |
419
|
nfeq2 |
|- F/ z g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
421 |
|
fveq1 |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( g ` z ) = ( ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) ) |
422 |
310 105
|
ifex |
|- if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) e. _V |
423 |
|
eqid |
|- ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
424 |
423
|
fvmpt2 |
|- ( ( z e. RR /\ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) e. _V ) -> ( ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
425 |
422 424
|
mpan2 |
|- ( z e. RR -> ( ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ` z ) = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
426 |
421 425
|
sylan9eq |
|- ( ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) /\ z e. RR ) -> ( g ` z ) = if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
427 |
426
|
eqeq1d |
|- ( ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) /\ z e. RR ) -> ( ( g ` z ) = 0 <-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ) |
428 |
426
|
oveq1d |
|- ( ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) /\ z e. RR ) -> ( ( g ` z ) + y ) = ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) |
429 |
427 428
|
ifbieq2d |
|- ( ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) /\ z e. RR ) -> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) = if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) |
430 |
420 429
|
mpteq2da |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) = ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) ) |
431 |
430
|
breq1d |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F ) ) |
432 |
431
|
rexbidv |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F <-> E. y e. RR+ ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F ) ) |
433 |
418 432
|
bitr3d |
|- ( g = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) <-> E. y e. RR+ ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F ) ) |
434 |
433
|
rspcev |
|- ( ( ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 /\ E. y e. RR+ ( z e. RR |-> if ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) + y ) ) ) oR <_ F ) -> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) ) |
435 |
319 415 434
|
syl2anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) ) |
436 |
|
simplrr |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b e. RR ) |
437 |
199
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. _V ) |
438 |
235 105
|
ifex |
|- if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) e. _V |
439 |
438
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) e. _V ) |
440 |
|
fconstmpt |
|- ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) = ( z e. RR |-> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) |
441 |
440
|
a1i |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) = ( z e. RR |-> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
442 |
|
eqidd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) |
443 |
196 437 439 441 442
|
offval2 |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( z e. RR |-> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) |
444 |
|
ovif2 |
|- ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 1 ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 0 ) ) |
445 |
266 267
|
ifeq12d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 1 ) , ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. 0 ) ) = if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) |
446 |
444 445
|
eqtrid |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) |
447 |
446
|
mpteq2dv |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) |
448 |
443 447
|
eqtrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) |
449 |
|
eqid |
|- ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) = ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) |
450 |
449
|
i1f1 |
|- ( ( ( `' f " ( ran f \ { 0 } ) ) e. dom vol /\ ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) -> ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) e. dom S.1 ) |
451 |
247 252 450
|
syl2anc |
|- ( f e. dom S.1 -> ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) e. dom S.1 ) |
452 |
451
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) e. dom S.1 ) |
453 |
452 264
|
i1fmulc |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) e. dom S.1 ) |
454 |
448 453
|
eqeltrrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
455 |
|
i1fsub |
|- ( ( f e. dom S.1 /\ ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. dom S.1 ) -> ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 ) |
456 |
233 454 455
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 ) |
457 |
|
itg1cl |
|- ( ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) e. RR ) |
458 |
456 457
|
syl |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) e. RR ) |
459 |
458
|
adantlrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) e. RR ) |
460 |
318
|
adantlrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 ) |
461 |
|
itg1cl |
|- ( ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 -> ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) e. RR ) |
462 |
460 461
|
syl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) e. RR ) |
463 |
|
simplrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b < ( S.1 ` f ) ) |
464 |
|
simpr |
|- ( ( f e. dom S.1 /\ b e. RR ) -> b e. RR ) |
465 |
8
|
adantr |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( S.1 ` f ) e. RR ) |
466 |
97
|
a1i |
|- ( ( f e. dom S.1 /\ b e. RR ) -> 2 e. RR+ ) |
467 |
464 465 466
|
ltdiv1d |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( b < ( S.1 ` f ) <-> ( b / 2 ) < ( ( S.1 ` f ) / 2 ) ) ) |
468 |
|
recn |
|- ( b e. RR -> b e. CC ) |
469 |
468
|
2halvesd |
|- ( b e. RR -> ( ( b / 2 ) + ( b / 2 ) ) = b ) |
470 |
469
|
oveq1d |
|- ( b e. RR -> ( ( ( b / 2 ) + ( b / 2 ) ) - ( b / 2 ) ) = ( b - ( b / 2 ) ) ) |
471 |
468
|
halfcld |
|- ( b e. RR -> ( b / 2 ) e. CC ) |
472 |
471 471
|
pncand |
|- ( b e. RR -> ( ( ( b / 2 ) + ( b / 2 ) ) - ( b / 2 ) ) = ( b / 2 ) ) |
473 |
470 472
|
eqtr3d |
|- ( b e. RR -> ( b - ( b / 2 ) ) = ( b / 2 ) ) |
474 |
473
|
breq1d |
|- ( b e. RR -> ( ( b - ( b / 2 ) ) < ( ( S.1 ` f ) / 2 ) <-> ( b / 2 ) < ( ( S.1 ` f ) / 2 ) ) ) |
475 |
474
|
adantl |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( b - ( b / 2 ) ) < ( ( S.1 ` f ) / 2 ) <-> ( b / 2 ) < ( ( S.1 ` f ) / 2 ) ) ) |
476 |
|
rehalfcl |
|- ( b e. RR -> ( b / 2 ) e. RR ) |
477 |
476
|
adantl |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( b / 2 ) e. RR ) |
478 |
8
|
rehalfcld |
|- ( f e. dom S.1 -> ( ( S.1 ` f ) / 2 ) e. RR ) |
479 |
478
|
adantr |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( S.1 ` f ) / 2 ) e. RR ) |
480 |
464 477 479
|
ltsubaddd |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( b - ( b / 2 ) ) < ( ( S.1 ` f ) / 2 ) <-> b < ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) ) |
481 |
467 475 480
|
3bitr2d |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( b < ( S.1 ` f ) <-> b < ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) ) |
482 |
481
|
adantr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( b < ( S.1 ` f ) <-> b < ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) ) |
483 |
482
|
adantlrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( b < ( S.1 ` f ) <-> b < ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) ) |
484 |
463 483
|
mpbid |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b < ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) |
485 |
452 264
|
itg1mulc |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) ) |
486 |
448
|
fveq2d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( ( RR X. { ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) } ) oF x. ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) = ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
487 |
449
|
itg11 |
|- ( ( ( `' f " ( ran f \ { 0 } ) ) e. dom vol /\ ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. RR ) -> ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
488 |
247 252 487
|
syl2anc |
|- ( f e. dom S.1 -> ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) = ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
489 |
488
|
oveq2d |
|- ( f e. dom S.1 -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
490 |
489
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
491 |
252
|
recnd |
|- ( f e. dom S.1 -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. CC ) |
492 |
491
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) e. CC ) |
493 |
265 492
|
mulcomd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) ) = ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
494 |
249
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) = ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) |
495 |
494
|
oveq1d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( S.1 ` f ) - b ) ) = ( ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( S.1 ` f ) - b ) ) ) |
496 |
259 382
|
mulcomd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( S.1 ` f ) - b ) ) = ( ( ( S.1 ` f ) - b ) x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
497 |
495 496
|
eqtrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( S.1 ` f ) - b ) ) = ( ( ( S.1 ` f ) - b ) x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
498 |
497
|
oveq1d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( S.1 ` f ) - b ) ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) = ( ( ( ( S.1 ` f ) - b ) x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) |
499 |
492 382 384 263
|
divassd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( S.1 ` f ) - b ) ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) = ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
500 |
382 257 259 261 262
|
divcan5rd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) = ( ( ( S.1 ` f ) - b ) / 2 ) ) |
501 |
498 499 500
|
3eqtr3d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( vol ` ( `' f " ( ran f \ { 0 } ) ) ) x. ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) = ( ( ( S.1 ` f ) - b ) / 2 ) ) |
502 |
490 493 501
|
3eqtrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) x. ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( S.1 ` f ) - b ) / 2 ) ) |
503 |
485 486 502
|
3eqtr3d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) = ( ( ( S.1 ` f ) - b ) / 2 ) ) |
504 |
503
|
oveq2d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( S.1 ` f ) - ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( S.1 ` f ) - ( ( ( S.1 ` f ) - b ) / 2 ) ) ) |
505 |
|
itg1sub |
|- ( ( f e. dom S.1 /\ ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. dom S.1 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( S.1 ` f ) - ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
506 |
233 454 505
|
syl2anc |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( S.1 ` f ) - ( S.1 ` ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
507 |
8
|
recnd |
|- ( f e. dom S.1 -> ( S.1 ` f ) e. CC ) |
508 |
507
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` f ) e. CC ) |
509 |
468
|
ad2antlr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b e. CC ) |
510 |
508 509 257 261
|
divsubdird |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - b ) / 2 ) = ( ( ( S.1 ` f ) / 2 ) - ( b / 2 ) ) ) |
511 |
510
|
oveq2d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( S.1 ` f ) - ( ( ( S.1 ` f ) - b ) / 2 ) ) = ( ( S.1 ` f ) - ( ( ( S.1 ` f ) / 2 ) - ( b / 2 ) ) ) ) |
512 |
507
|
adantr |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( S.1 ` f ) e. CC ) |
513 |
512
|
halfcld |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( S.1 ` f ) / 2 ) e. CC ) |
514 |
471
|
adantl |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( b / 2 ) e. CC ) |
515 |
512 513 514
|
subsubd |
|- ( ( f e. dom S.1 /\ b e. RR ) -> ( ( S.1 ` f ) - ( ( ( S.1 ` f ) / 2 ) - ( b / 2 ) ) ) = ( ( ( S.1 ` f ) - ( ( S.1 ` f ) / 2 ) ) + ( b / 2 ) ) ) |
516 |
515
|
adantr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( S.1 ` f ) - ( ( ( S.1 ` f ) / 2 ) - ( b / 2 ) ) ) = ( ( ( S.1 ` f ) - ( ( S.1 ` f ) / 2 ) ) + ( b / 2 ) ) ) |
517 |
507
|
2halvesd |
|- ( f e. dom S.1 -> ( ( ( S.1 ` f ) / 2 ) + ( ( S.1 ` f ) / 2 ) ) = ( S.1 ` f ) ) |
518 |
517
|
oveq1d |
|- ( f e. dom S.1 -> ( ( ( ( S.1 ` f ) / 2 ) + ( ( S.1 ` f ) / 2 ) ) - ( ( S.1 ` f ) / 2 ) ) = ( ( S.1 ` f ) - ( ( S.1 ` f ) / 2 ) ) ) |
519 |
507
|
halfcld |
|- ( f e. dom S.1 -> ( ( S.1 ` f ) / 2 ) e. CC ) |
520 |
519 519
|
pncand |
|- ( f e. dom S.1 -> ( ( ( ( S.1 ` f ) / 2 ) + ( ( S.1 ` f ) / 2 ) ) - ( ( S.1 ` f ) / 2 ) ) = ( ( S.1 ` f ) / 2 ) ) |
521 |
518 520
|
eqtr3d |
|- ( f e. dom S.1 -> ( ( S.1 ` f ) - ( ( S.1 ` f ) / 2 ) ) = ( ( S.1 ` f ) / 2 ) ) |
522 |
521
|
oveq1d |
|- ( f e. dom S.1 -> ( ( ( S.1 ` f ) - ( ( S.1 ` f ) / 2 ) ) + ( b / 2 ) ) = ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) |
523 |
522
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) - ( ( S.1 ` f ) / 2 ) ) + ( b / 2 ) ) = ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) |
524 |
511 516 523
|
3eqtrrd |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) = ( ( S.1 ` f ) - ( ( ( S.1 ` f ) - b ) / 2 ) ) ) |
525 |
504 506 524
|
3eqtr4d |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) |
526 |
525
|
adantlrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ( S.1 ` f ) / 2 ) + ( b / 2 ) ) ) |
527 |
484 526
|
breqtrrd |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b < ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
528 |
456
|
adantlrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 ) |
529 |
|
id |
|- ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) ) |
530 |
529
|
adantlrl |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) ) |
531 |
233 36
|
sylan |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( f ` z ) e. RR ) |
532 |
264
|
adantr |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) e. RR ) |
533 |
531 532
|
resubcld |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) e. RR ) |
534 |
533
|
leidd |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
535 |
534
|
adantr |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
536 |
285
|
breq2d |
|- ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) |
537 |
536
|
adantl |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) |
538 |
535 537
|
mpbird |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
539 |
533
|
adantr |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) e. RR ) |
540 |
48
|
a1i |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> 0 e. RR ) |
541 |
48
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> 0 e. RR ) |
542 |
533 541
|
ltnled |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) < 0 <-> -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) |
543 |
542
|
biimpar |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) < 0 ) |
544 |
539 540 543
|
ltled |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ 0 ) |
545 |
|
iffalse |
|- ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
546 |
545
|
breq2d |
|- ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ 0 ) ) |
547 |
546
|
adantl |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ 0 ) ) |
548 |
544 547
|
mpbird |
|- ( ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
549 |
538 548
|
pm2.61dan |
|- ( ( ( ( f e. dom S.1 /\ b e. RR ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
550 |
530 549
|
sylan |
|- ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
551 |
550
|
adantr |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
552 |
|
iftrue |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) = ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) |
553 |
552
|
oveq2d |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) = ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) |
554 |
|
iba |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <-> ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) ) ) |
555 |
554
|
bicomd |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) <-> 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) ) ) |
556 |
555
|
ifbid |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
557 |
553 556
|
breq12d |
|- ( z e. ( `' f " ( ran f \ { 0 } ) ) -> ( ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
558 |
557
|
adantl |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) <_ if ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
559 |
551 558
|
mpbird |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
560 |
35
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> f : RR --> RR ) |
561 |
170
|
eleq2d |
|- ( f : RR --> RR -> ( z e. ( `' f " ( ran f \ { 0 } ) ) <-> z e. ( ( `' f " ran f ) \ ( `' f " { 0 } ) ) ) ) |
562 |
|
eldif |
|- ( z e. ( ( `' f " ran f ) \ ( `' f " { 0 } ) ) <-> ( z e. ( `' f " ran f ) /\ -. z e. ( `' f " { 0 } ) ) ) |
563 |
561 562
|
bitrdi |
|- ( f : RR --> RR -> ( z e. ( `' f " ( ran f \ { 0 } ) ) <-> ( z e. ( `' f " ran f ) /\ -. z e. ( `' f " { 0 } ) ) ) ) |
564 |
563
|
notbid |
|- ( f : RR --> RR -> ( -. z e. ( `' f " ( ran f \ { 0 } ) ) <-> -. ( z e. ( `' f " ran f ) /\ -. z e. ( `' f " { 0 } ) ) ) ) |
565 |
564
|
adantr |
|- ( ( f : RR --> RR /\ z e. RR ) -> ( -. z e. ( `' f " ( ran f \ { 0 } ) ) <-> -. ( z e. ( `' f " ran f ) /\ -. z e. ( `' f " { 0 } ) ) ) ) |
566 |
|
pm4.53 |
|- ( -. ( z e. ( `' f " ran f ) /\ -. z e. ( `' f " { 0 } ) ) <-> ( -. z e. ( `' f " ran f ) \/ z e. ( `' f " { 0 } ) ) ) |
567 |
207
|
eleq2d |
|- ( f : RR --> RR -> ( z e. ( `' f " ran f ) <-> z e. RR ) ) |
568 |
567
|
biimpar |
|- ( ( f : RR --> RR /\ z e. RR ) -> z e. ( `' f " ran f ) ) |
569 |
568
|
pm2.24d |
|- ( ( f : RR --> RR /\ z e. RR ) -> ( -. z e. ( `' f " ran f ) -> ( f ` z ) = 0 ) ) |
570 |
181
|
simplbda |
|- ( ( f Fn RR /\ z e. ( `' f " { 0 } ) ) -> ( f ` z ) = 0 ) |
571 |
570
|
ex |
|- ( f Fn RR -> ( z e. ( `' f " { 0 } ) -> ( f ` z ) = 0 ) ) |
572 |
180 571
|
syl |
|- ( f : RR --> RR -> ( z e. ( `' f " { 0 } ) -> ( f ` z ) = 0 ) ) |
573 |
572
|
adantr |
|- ( ( f : RR --> RR /\ z e. RR ) -> ( z e. ( `' f " { 0 } ) -> ( f ` z ) = 0 ) ) |
574 |
569 573
|
jaod |
|- ( ( f : RR --> RR /\ z e. RR ) -> ( ( -. z e. ( `' f " ran f ) \/ z e. ( `' f " { 0 } ) ) -> ( f ` z ) = 0 ) ) |
575 |
566 574
|
syl5bi |
|- ( ( f : RR --> RR /\ z e. RR ) -> ( -. ( z e. ( `' f " ran f ) /\ -. z e. ( `' f " { 0 } ) ) -> ( f ` z ) = 0 ) ) |
576 |
565 575
|
sylbid |
|- ( ( f : RR --> RR /\ z e. RR ) -> ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> ( f ` z ) = 0 ) ) |
577 |
576
|
imp |
|- ( ( ( f : RR --> RR /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( f ` z ) = 0 ) |
578 |
560 577
|
sylanl1 |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( f ` z ) = 0 ) |
579 |
578
|
oveq1d |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` z ) - 0 ) = ( 0 - 0 ) ) |
580 |
579 224
|
eqtrdi |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` z ) - 0 ) = 0 ) |
581 |
580 30
|
eqbrtrdi |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` z ) - 0 ) <_ 0 ) |
582 |
|
iffalse |
|- ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) = 0 ) |
583 |
582
|
oveq2d |
|- ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) = ( ( f ` z ) - 0 ) ) |
584 |
289 288
|
sylbir |
|- ( ( -. 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) \/ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
585 |
584
|
olcs |
|- ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
586 |
583 585
|
breq12d |
|- ( -. z e. ( `' f " ( ran f \ { 0 } ) ) -> ( ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - 0 ) <_ 0 ) ) |
587 |
586
|
adantl |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) <-> ( ( f ` z ) - 0 ) <_ 0 ) ) |
588 |
581 587
|
mpbird |
|- ( ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) /\ -. z e. ( `' f " ( ran f \ { 0 } ) ) ) -> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
589 |
559 588
|
pm2.61dan |
|- ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
590 |
589
|
ralrimiva |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> A. z e. RR ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) |
591 |
63
|
a1i |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> RR e. _V ) |
592 |
|
ovex |
|- ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. _V |
593 |
592
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) e. _V ) |
594 |
422
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) e. _V ) |
595 |
|
fvex |
|- ( f ` z ) e. _V |
596 |
595
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> ( f ` z ) e. _V ) |
597 |
199 105
|
ifex |
|- if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) e. _V |
598 |
597
|
a1i |
|- ( ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) /\ z e. RR ) -> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) e. _V ) |
599 |
70
|
ad2antrr |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> f = ( z e. RR |-> ( f ` z ) ) ) |
600 |
|
eqidd |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) = ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) |
601 |
591 596 598 599 600
|
offval2 |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) = ( z e. RR |-> ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
602 |
|
eqidd |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) = ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
603 |
591 593 594 601 602
|
ofrfval2 |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) oR <_ ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) <-> A. z e. RR ( ( f ` z ) - if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) <_ if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
604 |
590 603
|
mpbird |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) oR <_ ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
605 |
|
itg1le |
|- ( ( ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) e. dom S.1 /\ ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) e. dom S.1 /\ ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) oR <_ ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) <_ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
606 |
528 460 604 605
|
syl3anc |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> ( S.1 ` ( f oF - ( z e. RR |-> if ( z e. ( `' f " ( ran f \ { 0 } ) ) , ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) , 0 ) ) ) ) <_ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
607 |
436 459 462 527 606
|
ltletrd |
|- ( ( ( f e. dom S.1 /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b < ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
608 |
607
|
adantllr |
|- ( ( ( ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b < ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
609 |
608
|
adantlll |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> b < ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
610 |
|
fvex |
|- ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) e. _V |
611 |
|
eqeq1 |
|- ( a = ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) -> ( a = ( S.1 ` g ) <-> ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) ) |
612 |
611
|
anbi2d |
|- ( a = ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) <-> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) ) ) |
613 |
612
|
rexbidv |
|- ( a = ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) -> ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) <-> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) ) ) |
614 |
|
breq2 |
|- ( a = ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) -> ( b < a <-> b < ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) ) |
615 |
613 614
|
anbi12d |
|- ( a = ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) -> ( ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) <-> ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) /\ b < ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) ) ) |
616 |
610 615
|
spcev |
|- ( ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( S.1 ` g ) ) /\ b < ( S.1 ` ( z e. RR |-> if ( ( 0 <_ ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) /\ z e. ( `' f " ( ran f \ { 0 } ) ) ) , ( ( f ` z ) - ( ( ( S.1 ` f ) - b ) / ( 2 x. ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
617 |
435 609 616
|
syl2anc |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) /\ ( vol* ` ( `' f " ( ran f \ { 0 } ) ) ) =/= 0 ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
618 |
192 617
|
pm2.61dane |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ ( b < ( S.1 ` f ) /\ b e. RR ) ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
619 |
618
|
expr |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) -> ( b e. RR -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
620 |
619
|
adantllr |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) -> ( b e. RR -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
621 |
620
|
adantr |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> ( b e. RR -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
622 |
157 621
|
mpd |
|- ( ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) /\ b =/= -oo ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
623 |
139 622
|
pm2.61dane |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < ( S.1 ` f ) ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
624 |
623
|
ex |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( b < ( S.1 ` f ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
625 |
94 624
|
sylbid |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> ( b < s -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
626 |
625
|
imp |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) /\ b < s ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
627 |
626
|
an32s |
|- ( ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ b < s ) /\ ( f e. dom S.1 /\ ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
628 |
627
|
rexlimdvaa |
|- ( ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) /\ b < s ) -> ( E. f e. dom S.1 ( f oR <_ F /\ s = ( S.1 ` f ) ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
629 |
628
|
expimpd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> ( ( b < s /\ E. f e. dom S.1 ( f oR <_ F /\ s = ( S.1 ` f ) ) ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
630 |
629
|
ancomsd |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> ( ( E. f e. dom S.1 ( f oR <_ F /\ s = ( S.1 ` f ) ) /\ b < s ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
631 |
630
|
exlimdv |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> ( E. s ( E. f e. dom S.1 ( f oR <_ F /\ s = ( S.1 ` f ) ) /\ b < s ) -> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) ) |
632 |
|
eqeq1 |
|- ( x = s -> ( x = ( S.1 ` f ) <-> s = ( S.1 ` f ) ) ) |
633 |
632
|
anbi2d |
|- ( x = s -> ( ( f oR <_ F /\ x = ( S.1 ` f ) ) <-> ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) |
634 |
633
|
rexbidv |
|- ( x = s -> ( E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) <-> E. f e. dom S.1 ( f oR <_ F /\ s = ( S.1 ` f ) ) ) ) |
635 |
634
|
rexab |
|- ( E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s <-> E. s ( E. f e. dom S.1 ( f oR <_ F /\ s = ( S.1 ` f ) ) /\ b < s ) ) |
636 |
|
eqeq1 |
|- ( x = a -> ( x = ( S.1 ` g ) <-> a = ( S.1 ` g ) ) ) |
637 |
636
|
anbi2d |
|- ( x = a -> ( ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) <-> ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) ) ) |
638 |
637
|
rexbidv |
|- ( x = a -> ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) <-> E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) ) ) |
639 |
638
|
rexab |
|- ( E. a e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } b < a <-> E. a ( E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ a = ( S.1 ` g ) ) /\ b < a ) ) |
640 |
631 635 639
|
3imtr4g |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> ( E. s e. { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } b < s -> E. a e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } b < a ) ) |
641 |
92 640
|
sylbid |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ b e. RR* ) -> ( b < sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) -> E. a e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } b < a ) ) |
642 |
641
|
impr |
|- ( ( F : RR --> ( 0 [,] +oo ) /\ ( b e. RR* /\ b < sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) ) ) -> E. a e. { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } b < a ) |
643 |
6 15 89 642
|
eqsupd |
|- ( F : RR --> ( 0 [,] +oo ) -> sup ( { x | E. g e. dom S.1 ( E. y e. RR+ ( z e. RR |-> if ( ( g ` z ) = 0 , 0 , ( ( g ` z ) + y ) ) ) oR <_ F /\ x = ( S.1 ` g ) ) } , RR* , < ) = sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) ) |
644 |
4 643
|
eqtrid |
|- ( F : RR --> ( 0 [,] +oo ) -> sup ( L , RR* , < ) = sup ( { x | E. f e. dom S.1 ( f oR <_ F /\ x = ( S.1 ` f ) ) } , RR* , < ) ) |
645 |
3 644
|
eqtr4d |
|- ( F : RR --> ( 0 [,] +oo ) -> ( S.2 ` F ) = sup ( L , RR* , < ) ) |