Metamath Proof Explorer


Theorem itg10a

Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses itg10a.1
|- ( ph -> F e. dom S.1 )
itg10a.2
|- ( ph -> A C_ RR )
itg10a.3
|- ( ph -> ( vol* ` A ) = 0 )
itg10a.4
|- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 )
Assertion itg10a
|- ( ph -> ( S.1 ` F ) = 0 )

Proof

Step Hyp Ref Expression
1 itg10a.1
 |-  ( ph -> F e. dom S.1 )
2 itg10a.2
 |-  ( ph -> A C_ RR )
3 itg10a.3
 |-  ( ph -> ( vol* ` A ) = 0 )
4 itg10a.4
 |-  ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 )
5 itg1val
 |-  ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) )
6 1 5 syl
 |-  ( ph -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) )
7 i1ff
 |-  ( F e. dom S.1 -> F : RR --> RR )
8 1 7 syl
 |-  ( ph -> F : RR --> RR )
9 8 ffnd
 |-  ( ph -> F Fn RR )
10 9 adantr
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> F Fn RR )
11 fniniseg
 |-  ( F Fn RR -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) )
12 10 11 syl
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) <-> ( x e. RR /\ ( F ` x ) = k ) ) )
13 eldifsni
 |-  ( k e. ( ran F \ { 0 } ) -> k =/= 0 )
14 13 ad2antlr
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> k =/= 0 )
15 simprl
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. RR )
16 eldif
 |-  ( x e. ( RR \ A ) <-> ( x e. RR /\ -. x e. A ) )
17 simplrr
 |-  ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) = k )
18 4 ad4ant14
 |-  ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) = 0 )
19 17 18 eqtr3d
 |-  ( ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) /\ x e. ( RR \ A ) ) -> k = 0 )
20 19 ex
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( x e. ( RR \ A ) -> k = 0 ) )
21 16 20 syl5bir
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( ( x e. RR /\ -. x e. A ) -> k = 0 ) )
22 15 21 mpand
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( -. x e. A -> k = 0 ) )
23 22 necon1ad
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> ( k =/= 0 -> x e. A ) )
24 14 23 mpd
 |-  ( ( ( ph /\ k e. ( ran F \ { 0 } ) ) /\ ( x e. RR /\ ( F ` x ) = k ) ) -> x e. A )
25 24 ex
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( ( x e. RR /\ ( F ` x ) = k ) -> x e. A ) )
26 12 25 sylbid
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( x e. ( `' F " { k } ) -> x e. A ) )
27 26 ssrdv
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ A )
28 2 adantr
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> A C_ RR )
29 27 28 sstrd
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) C_ RR )
30 3 adantr
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol* ` A ) = 0 )
31 ovolssnul
 |-  ( ( ( `' F " { k } ) C_ A /\ A C_ RR /\ ( vol* ` A ) = 0 ) -> ( vol* ` ( `' F " { k } ) ) = 0 )
32 27 28 30 31 syl3anc
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol* ` ( `' F " { k } ) ) = 0 )
33 nulmbl
 |-  ( ( ( `' F " { k } ) C_ RR /\ ( vol* ` ( `' F " { k } ) ) = 0 ) -> ( `' F " { k } ) e. dom vol )
34 29 32 33 syl2anc
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( `' F " { k } ) e. dom vol )
35 mblvol
 |-  ( ( `' F " { k } ) e. dom vol -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) )
36 34 35 syl
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = ( vol* ` ( `' F " { k } ) ) )
37 36 32 eqtrd
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) = 0 )
38 37 oveq2d
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( k x. 0 ) )
39 8 frnd
 |-  ( ph -> ran F C_ RR )
40 39 ssdifssd
 |-  ( ph -> ( ran F \ { 0 } ) C_ RR )
41 40 sselda
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. RR )
42 41 recnd
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> k e. CC )
43 42 mul01d
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. 0 ) = 0 )
44 38 43 eqtrd
 |-  ( ( ph /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 )
45 44 sumeq2dv
 |-  ( ph -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ k e. ( ran F \ { 0 } ) 0 )
46 i1frn
 |-  ( F e. dom S.1 -> ran F e. Fin )
47 1 46 syl
 |-  ( ph -> ran F e. Fin )
48 difss
 |-  ( ran F \ { 0 } ) C_ ran F
49 ssfi
 |-  ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin )
50 47 48 49 sylancl
 |-  ( ph -> ( ran F \ { 0 } ) e. Fin )
51 50 olcd
 |-  ( ph -> ( ( ran F \ { 0 } ) C_ ( ZZ>= ` 0 ) \/ ( ran F \ { 0 } ) e. Fin ) )
52 sumz
 |-  ( ( ( ran F \ { 0 } ) C_ ( ZZ>= ` 0 ) \/ ( ran F \ { 0 } ) e. Fin ) -> sum_ k e. ( ran F \ { 0 } ) 0 = 0 )
53 51 52 syl
 |-  ( ph -> sum_ k e. ( ran F \ { 0 } ) 0 = 0 )
54 45 53 eqtrd
 |-  ( ph -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = 0 )
55 6 54 eqtrd
 |-  ( ph -> ( S.1 ` F ) = 0 )