Step |
Hyp |
Ref |
Expression |
1 |
|
itg2addnc.f1 |
|- ( ph -> F e. MblFn ) |
2 |
|
itg2addnc.f2 |
|- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
3 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
4 |
|
fss |
|- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
5 |
2 3 4
|
sylancl |
|- ( ph -> F : RR --> RR ) |
6 |
5
|
ad2antrr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> F : RR --> RR ) |
7 |
6
|
ffvelrnda |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
8 |
|
rpre |
|- ( v e. RR+ -> v e. RR ) |
9 |
|
3re |
|- 3 e. RR |
10 |
|
3ne0 |
|- 3 =/= 0 |
11 |
9 10
|
pm3.2i |
|- ( 3 e. RR /\ 3 =/= 0 ) |
12 |
|
redivcl |
|- ( ( v e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( v / 3 ) e. RR ) |
13 |
12
|
3expb |
|- ( ( v e. RR /\ ( 3 e. RR /\ 3 =/= 0 ) ) -> ( v / 3 ) e. RR ) |
14 |
8 11 13
|
sylancl |
|- ( v e. RR+ -> ( v / 3 ) e. RR ) |
15 |
14
|
ad2antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( v / 3 ) e. RR ) |
16 |
|
rpcnne0 |
|- ( v e. RR+ -> ( v e. CC /\ v =/= 0 ) ) |
17 |
|
3cn |
|- 3 e. CC |
18 |
17 10
|
pm3.2i |
|- ( 3 e. CC /\ 3 =/= 0 ) |
19 |
|
divne0 |
|- ( ( ( v e. CC /\ v =/= 0 ) /\ ( 3 e. CC /\ 3 =/= 0 ) ) -> ( v / 3 ) =/= 0 ) |
20 |
16 18 19
|
sylancl |
|- ( v e. RR+ -> ( v / 3 ) =/= 0 ) |
21 |
20
|
ad2antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( v / 3 ) =/= 0 ) |
22 |
7 15 21
|
redivcld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( F ` x ) / ( v / 3 ) ) e. RR ) |
23 |
|
reflcl |
|- ( ( ( F ` x ) / ( v / 3 ) ) e. RR -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. RR ) |
24 |
22 23
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. RR ) |
25 |
|
peano2rem |
|- ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. RR -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) e. RR ) |
26 |
24 25
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) e. RR ) |
27 |
26 15
|
remulcld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. RR ) |
28 |
|
i1ff |
|- ( h e. dom S.1 -> h : RR --> RR ) |
29 |
28
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> h : RR --> RR ) |
30 |
29
|
ffvelrnda |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( h ` x ) e. RR ) |
31 |
27 30
|
ifcld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. RR ) |
32 |
31
|
fmpttd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) : RR --> RR ) |
33 |
|
fzfi |
|- ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) e. Fin |
34 |
|
ovex |
|- ( ( t - 1 ) x. ( v / 3 ) ) e. _V |
35 |
|
eqid |
|- ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) = ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) |
36 |
34 35
|
fnmpti |
|- ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) Fn ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |
37 |
|
dffn4 |
|- ( ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) Fn ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) <-> ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) : ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) -onto-> ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) ) |
38 |
36 37
|
mpbi |
|- ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) : ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) -onto-> ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) |
39 |
|
fofi |
|- ( ( ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) e. Fin /\ ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) : ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) -onto-> ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) ) -> ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) e. Fin ) |
40 |
33 38 39
|
mp2an |
|- ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) e. Fin |
41 |
|
i1frn |
|- ( h e. dom S.1 -> ran h e. Fin ) |
42 |
41
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ran h e. Fin ) |
43 |
|
unfi |
|- ( ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) e. Fin /\ ran h e. Fin ) -> ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) e. Fin ) |
44 |
40 42 43
|
sylancr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) e. Fin ) |
45 |
|
0zd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> 0 e. ZZ ) |
46 |
28
|
frnd |
|- ( h e. dom S.1 -> ran h C_ RR ) |
47 |
|
i1f0rn |
|- ( h e. dom S.1 -> 0 e. ran h ) |
48 |
|
elex2 |
|- ( 0 e. ran h -> E. x x e. ran h ) |
49 |
47 48
|
syl |
|- ( h e. dom S.1 -> E. x x e. ran h ) |
50 |
|
n0 |
|- ( ran h =/= (/) <-> E. x x e. ran h ) |
51 |
49 50
|
sylibr |
|- ( h e. dom S.1 -> ran h =/= (/) ) |
52 |
|
fimaxre2 |
|- ( ( ran h C_ RR /\ ran h e. Fin ) -> E. x e. RR A. y e. ran h y <_ x ) |
53 |
46 41 52
|
syl2anc |
|- ( h e. dom S.1 -> E. x e. RR A. y e. ran h y <_ x ) |
54 |
|
suprcl |
|- ( ( ran h C_ RR /\ ran h =/= (/) /\ E. x e. RR A. y e. ran h y <_ x ) -> sup ( ran h , RR , < ) e. RR ) |
55 |
46 51 53 54
|
syl3anc |
|- ( h e. dom S.1 -> sup ( ran h , RR , < ) e. RR ) |
56 |
55
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> sup ( ran h , RR , < ) e. RR ) |
57 |
56 15 21
|
redivcld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( sup ( ran h , RR , < ) / ( v / 3 ) ) e. RR ) |
58 |
|
peano2re |
|- ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) e. RR -> ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) e. RR ) |
59 |
57 58
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) e. RR ) |
60 |
|
ceicl |
|- ( ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) e. RR -> -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) e. ZZ ) |
61 |
59 60
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) e. ZZ ) |
62 |
61
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) e. ZZ ) |
63 |
22
|
flcld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. ZZ ) |
64 |
63
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. ZZ ) |
65 |
|
3nn |
|- 3 e. NN |
66 |
|
nnrp |
|- ( 3 e. NN -> 3 e. RR+ ) |
67 |
65 66
|
ax-mp |
|- 3 e. RR+ |
68 |
|
rpdivcl |
|- ( ( v e. RR+ /\ 3 e. RR+ ) -> ( v / 3 ) e. RR+ ) |
69 |
67 68
|
mpan2 |
|- ( v e. RR+ -> ( v / 3 ) e. RR+ ) |
70 |
69
|
ad2antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( v / 3 ) e. RR+ ) |
71 |
2
|
ad2antrr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> F : RR --> ( 0 [,) +oo ) ) |
72 |
71
|
ffvelrnda |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
73 |
|
elrege0 |
|- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
74 |
72 73
|
sylib |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
75 |
74
|
simprd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> 0 <_ ( F ` x ) ) |
76 |
7 70 75
|
divge0d |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> 0 <_ ( ( F ` x ) / ( v / 3 ) ) ) |
77 |
|
flge0nn0 |
|- ( ( ( ( F ` x ) / ( v / 3 ) ) e. RR /\ 0 <_ ( ( F ` x ) / ( v / 3 ) ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. NN0 ) |
78 |
22 76 77
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. NN0 ) |
79 |
78
|
nn0ge0d |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> 0 <_ ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
80 |
79
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> 0 <_ ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
81 |
46 51 53
|
3jca |
|- ( h e. dom S.1 -> ( ran h C_ RR /\ ran h =/= (/) /\ E. x e. RR A. y e. ran h y <_ x ) ) |
82 |
81
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ran h C_ RR /\ ran h =/= (/) /\ E. x e. RR A. y e. ran h y <_ x ) ) |
83 |
|
ffn |
|- ( h : RR --> RR -> h Fn RR ) |
84 |
28 83
|
syl |
|- ( h e. dom S.1 -> h Fn RR ) |
85 |
|
dffn3 |
|- ( h Fn RR <-> h : RR --> ran h ) |
86 |
84 85
|
sylib |
|- ( h e. dom S.1 -> h : RR --> ran h ) |
87 |
86
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> h : RR --> ran h ) |
88 |
87
|
ffvelrnda |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( h ` x ) e. ran h ) |
89 |
|
suprub |
|- ( ( ( ran h C_ RR /\ ran h =/= (/) /\ E. x e. RR A. y e. ran h y <_ x ) /\ ( h ` x ) e. ran h ) -> ( h ` x ) <_ sup ( ran h , RR , < ) ) |
90 |
82 88 89
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( h ` x ) <_ sup ( ran h , RR , < ) ) |
91 |
|
letr |
|- ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. RR /\ ( h ` x ) e. RR /\ sup ( ran h , RR , < ) e. RR ) -> ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) <_ sup ( ran h , RR , < ) ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ sup ( ran h , RR , < ) ) ) |
92 |
27 30 56 91
|
syl3anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) <_ sup ( ran h , RR , < ) ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ sup ( ran h , RR , < ) ) ) |
93 |
26 56 70
|
lemuldivd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ sup ( ran h , RR , < ) <-> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) <_ ( sup ( ran h , RR , < ) / ( v / 3 ) ) ) ) |
94 |
|
1red |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> 1 e. RR ) |
95 |
24 94 57
|
lesubaddd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) <_ ( sup ( ran h , RR , < ) / ( v / 3 ) ) <-> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |
96 |
93 95
|
bitrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ sup ( ran h , RR , < ) <-> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |
97 |
|
ceige |
|- ( ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) e. RR -> ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |
98 |
59 97
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |
99 |
61
|
zred |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) e. RR ) |
100 |
|
letr |
|- ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. RR /\ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) e. RR /\ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) /\ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
101 |
24 59 99 100
|
syl3anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) /\ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
102 |
98 101
|
mpan2d |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
103 |
96 102
|
sylbid |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ sup ( ran h , RR , < ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
104 |
92 103
|
syld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) <_ sup ( ran h , RR , < ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
105 |
90 104
|
mpan2d |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
106 |
105
|
adantrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
107 |
106
|
imp |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |
108 |
45 62 64 80 107
|
elfzd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ) |
109 |
|
eqid |
|- ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) |
110 |
|
oveq1 |
|- ( t = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) -> ( t - 1 ) = ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) ) |
111 |
110
|
oveq1d |
|- ( t = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) -> ( ( t - 1 ) x. ( v / 3 ) ) = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) |
112 |
111
|
rspceeqv |
|- ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) /\ ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) -> E. t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) = ( ( t - 1 ) x. ( v / 3 ) ) ) |
113 |
108 109 112
|
sylancl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> E. t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) = ( ( t - 1 ) x. ( v / 3 ) ) ) |
114 |
|
ovex |
|- ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. _V |
115 |
35
|
elrnmpt |
|- ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. _V -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) <-> E. t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) = ( ( t - 1 ) x. ( v / 3 ) ) ) ) |
116 |
114 115
|
ax-mp |
|- ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) <-> E. t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) = ( ( t - 1 ) x. ( v / 3 ) ) ) |
117 |
113 116
|
sylibr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) ) |
118 |
|
elun1 |
|- ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
119 |
117 118
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
120 |
|
elun2 |
|- ( ( h ` x ) e. ran h -> ( h ` x ) e. ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
121 |
88 120
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( h ` x ) e. ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
122 |
121
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) /\ -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) -> ( h ` x ) e. ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
123 |
119 122
|
ifclda |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
124 |
123
|
fmpttd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) : RR --> ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
125 |
124
|
frnd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) C_ ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) |
126 |
|
ssfi |
|- ( ( ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) e. Fin /\ ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) C_ ( ran ( t e. ( 0 ... -u ( |_ ` -u ( ( sup ( ran h , RR , < ) / ( v / 3 ) ) + 1 ) ) ) |-> ( ( t - 1 ) x. ( v / 3 ) ) ) u. ran h ) ) -> ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) e. Fin ) |
127 |
44 125 126
|
syl2anc |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) e. Fin ) |
128 |
|
eqid |
|- ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) = ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) |
129 |
128
|
mptpreima |
|- ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) = { x e. RR | if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } } |
130 |
|
unrab |
|- ( { x e. RR | ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) } u. { x e. RR | ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) } ) = { x e. RR | ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) ) } |
131 |
|
inrab |
|- ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) = { x e. RR | ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) } |
132 |
131
|
ineq1i |
|- ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) = ( { x e. RR | ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) } i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) |
133 |
|
inrab |
|- ( { x e. RR | ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) } i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) = { x e. RR | ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) } |
134 |
132 133
|
eqtri |
|- ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) = { x e. RR | ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) } |
135 |
|
unrab |
|- ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) = { x e. RR | ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) } |
136 |
135
|
ineq1i |
|- ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) = ( { x e. RR | ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) } i^i { x e. RR | t = ( h ` x ) } ) |
137 |
|
inrab |
|- ( { x e. RR | ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) } i^i { x e. RR | t = ( h ` x ) } ) = { x e. RR | ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) } |
138 |
136 137
|
eqtri |
|- ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) = { x e. RR | ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) } |
139 |
134 138
|
uneq12i |
|- ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) u. ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) ) = ( { x e. RR | ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) } u. { x e. RR | ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) } ) |
140 |
|
eqcom |
|- ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = t <-> t = if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) |
141 |
|
fvex |
|- ( h ` x ) e. _V |
142 |
114 141
|
ifex |
|- if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. _V |
143 |
142
|
elsn |
|- ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } <-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = t ) |
144 |
|
ianor |
|- ( -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) <-> ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ -. ( h ` x ) =/= 0 ) ) |
145 |
|
nne |
|- ( -. ( h ` x ) =/= 0 <-> ( h ` x ) = 0 ) |
146 |
145
|
orbi2i |
|- ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ -. ( h ` x ) =/= 0 ) <-> ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) ) |
147 |
144 146
|
bitr2i |
|- ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) <-> -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) |
148 |
147
|
anbi1i |
|- ( ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) <-> ( -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( h ` x ) ) ) |
149 |
148
|
orbi2i |
|- ( ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) ) <-> ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( h ` x ) ) ) ) |
150 |
|
eqif |
|- ( t = if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) <-> ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( h ` x ) ) ) ) |
151 |
149 150
|
bitr4i |
|- ( ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) ) <-> t = if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) |
152 |
140 143 151
|
3bitr4i |
|- ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } <-> ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) ) ) |
153 |
152
|
rabbii |
|- { x e. RR | if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } } = { x e. RR | ( ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) /\ t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) \/ ( ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) \/ ( h ` x ) = 0 ) /\ t = ( h ` x ) ) ) } |
154 |
130 139 153
|
3eqtr4ri |
|- { x e. RR | if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } } = ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) u. ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) ) |
155 |
129 154
|
eqtri |
|- ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) = ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) u. ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) ) |
156 |
|
eldifi |
|- ( t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) -> t e. ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) ) |
157 |
32
|
frnd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) C_ RR ) |
158 |
157
|
sseld |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( t e. ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) -> t e. RR ) ) |
159 |
156 158
|
syl5 |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) -> t e. RR ) ) |
160 |
159
|
imdistani |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) ) |
161 |
|
rabiun |
|- { x e. U_ t e. ran h ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = U_ t e. ran h { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } |
162 |
|
cnvimarndm |
|- ( `' h " ran h ) = dom h |
163 |
|
iunid |
|- U_ t e. ran h { t } = ran h |
164 |
163
|
imaeq2i |
|- ( `' h " U_ t e. ran h { t } ) = ( `' h " ran h ) |
165 |
|
imaiun |
|- ( `' h " U_ t e. ran h { t } ) = U_ t e. ran h ( `' h " { t } ) |
166 |
164 165
|
eqtr3i |
|- ( `' h " ran h ) = U_ t e. ran h ( `' h " { t } ) |
167 |
162 166
|
eqtr3i |
|- dom h = U_ t e. ran h ( `' h " { t } ) |
168 |
28
|
fdmd |
|- ( h e. dom S.1 -> dom h = RR ) |
169 |
167 168
|
eqtr3id |
|- ( h e. dom S.1 -> U_ t e. ran h ( `' h " { t } ) = RR ) |
170 |
169
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> U_ t e. ran h ( `' h " { t } ) = RR ) |
171 |
|
rabeq |
|- ( U_ t e. ran h ( `' h " { t } ) = RR -> { x e. U_ t e. ran h ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
172 |
170 171
|
syl |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> { x e. U_ t e. ran h ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
173 |
161 172
|
eqtr3id |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> U_ t e. ran h { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
174 |
|
fniniseg |
|- ( h Fn RR -> ( x e. ( `' h " { t } ) <-> ( x e. RR /\ ( h ` x ) = t ) ) ) |
175 |
28 83 174
|
3syl |
|- ( h e. dom S.1 -> ( x e. ( `' h " { t } ) <-> ( x e. RR /\ ( h ` x ) = t ) ) ) |
176 |
175
|
simplbda |
|- ( ( h e. dom S.1 /\ x e. ( `' h " { t } ) ) -> ( h ` x ) = t ) |
177 |
176
|
breq2d |
|- ( ( h e. dom S.1 /\ x e. ( `' h " { t } ) ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) <-> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t ) ) |
178 |
177
|
rabbidva |
|- ( h e. dom S.1 -> { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
179 |
|
inrab2 |
|- ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) = { x e. ( RR i^i ( `' h " { t } ) ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } |
180 |
|
imassrn |
|- ( `' h " { t } ) C_ ran `' h |
181 |
|
dfdm4 |
|- dom h = ran `' h |
182 |
181 168
|
eqtr3id |
|- ( h e. dom S.1 -> ran `' h = RR ) |
183 |
180 182
|
sseqtrid |
|- ( h e. dom S.1 -> ( `' h " { t } ) C_ RR ) |
184 |
|
sseqin2 |
|- ( ( `' h " { t } ) C_ RR <-> ( RR i^i ( `' h " { t } ) ) = ( `' h " { t } ) ) |
185 |
183 184
|
sylib |
|- ( h e. dom S.1 -> ( RR i^i ( `' h " { t } ) ) = ( `' h " { t } ) ) |
186 |
|
rabeq |
|- ( ( RR i^i ( `' h " { t } ) ) = ( `' h " { t } ) -> { x e. ( RR i^i ( `' h " { t } ) ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } = { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
187 |
185 186
|
syl |
|- ( h e. dom S.1 -> { x e. ( RR i^i ( `' h " { t } ) ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } = { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
188 |
179 187
|
eqtrid |
|- ( h e. dom S.1 -> ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) = { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
189 |
178 188
|
eqtr4d |
|- ( h e. dom S.1 -> { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) ) |
190 |
189
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) ) |
191 |
26
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) e. RR ) |
192 |
46
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ran h C_ RR ) |
193 |
192
|
sselda |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> t e. RR ) |
194 |
193
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> t e. RR ) |
195 |
69
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( v / 3 ) e. RR+ ) |
196 |
191 194 195
|
lemuldivd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t <-> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) <_ ( t / ( v / 3 ) ) ) ) |
197 |
24
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. RR ) |
198 |
|
1red |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> 1 e. RR ) |
199 |
14
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( v / 3 ) e. RR ) |
200 |
20
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( v / 3 ) =/= 0 ) |
201 |
194 199 200
|
redivcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( t / ( v / 3 ) ) e. RR ) |
202 |
197 198 201
|
lesubaddd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) <_ ( t / ( v / 3 ) ) <-> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( t / ( v / 3 ) ) + 1 ) ) ) |
203 |
7
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
204 |
|
peano2re |
|- ( ( t / ( v / 3 ) ) e. RR -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
205 |
201 204
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
206 |
|
reflcl |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. RR -> ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) e. RR ) |
207 |
205 206
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) e. RR ) |
208 |
|
peano2re |
|- ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) e. RR -> ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) e. RR ) |
209 |
207 208
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) e. RR ) |
210 |
203 209 195
|
ltdivmuld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( ( F ` x ) / ( v / 3 ) ) < ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) <-> ( F ` x ) < ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) |
211 |
22
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( F ` x ) / ( v / 3 ) ) e. RR ) |
212 |
|
flflp1 |
|- ( ( ( ( F ` x ) / ( v / 3 ) ) e. RR /\ ( ( t / ( v / 3 ) ) + 1 ) e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( t / ( v / 3 ) ) + 1 ) <-> ( ( F ` x ) / ( v / 3 ) ) < ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) |
213 |
211 205 212
|
syl2anc |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( t / ( v / 3 ) ) + 1 ) <-> ( ( F ` x ) / ( v / 3 ) ) < ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) |
214 |
199 209
|
remulcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) e. RR ) |
215 |
214
|
rexrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) e. RR* ) |
216 |
|
elioomnf |
|- ( ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) e. RR* -> ( ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
217 |
215 216
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
218 |
203
|
biantrurd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( F ` x ) < ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
219 |
217 218
|
bitr4d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) <-> ( F ` x ) < ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) |
220 |
210 213 219
|
3bitr4d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <_ ( ( t / ( v / 3 ) ) + 1 ) <-> ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
221 |
196 202 220
|
3bitrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) /\ x e. RR ) -> ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t <-> ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
222 |
221
|
rabbidva |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } = { x e. RR | ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) } ) |
223 |
2
|
feqmptd |
|- ( ph -> F = ( x e. RR |-> ( F ` x ) ) ) |
224 |
223
|
cnveqd |
|- ( ph -> `' F = `' ( x e. RR |-> ( F ` x ) ) ) |
225 |
224
|
imaeq1d |
|- ( ph -> ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) = ( `' ( x e. RR |-> ( F ` x ) ) " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
226 |
|
eqid |
|- ( x e. RR |-> ( F ` x ) ) = ( x e. RR |-> ( F ` x ) ) |
227 |
226
|
mptpreima |
|- ( `' ( x e. RR |-> ( F ` x ) ) " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) = { x e. RR | ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) } |
228 |
225 227
|
eqtrdi |
|- ( ph -> ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) = { x e. RR | ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) } ) |
229 |
228
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) = { x e. RR | ( F ` x ) e. ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) } ) |
230 |
222 229
|
eqtr4d |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } = ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
231 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) e. dom vol ) |
232 |
1 5 231
|
syl2anc |
|- ( ph -> ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) e. dom vol ) |
233 |
232
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> ( `' F " ( -oo (,) ( ( v / 3 ) x. ( ( |_ ` ( ( t / ( v / 3 ) ) + 1 ) ) + 1 ) ) ) ) e. dom vol ) |
234 |
230 233
|
eqeltrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } e. dom vol ) |
235 |
46
|
sseld |
|- ( h e. dom S.1 -> ( t e. ran h -> t e. RR ) ) |
236 |
235
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( t e. ran h -> t e. RR ) ) |
237 |
236
|
imdistani |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) ) |
238 |
|
i1fmbf |
|- ( h e. dom S.1 -> h e. MblFn ) |
239 |
238 28
|
jca |
|- ( h e. dom S.1 -> ( h e. MblFn /\ h : RR --> RR ) ) |
240 |
239
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( h e. MblFn /\ h : RR --> RR ) ) |
241 |
|
mbfimasn |
|- ( ( h e. MblFn /\ h : RR --> RR /\ t e. RR ) -> ( `' h " { t } ) e. dom vol ) |
242 |
241
|
3expa |
|- ( ( ( h e. MblFn /\ h : RR --> RR ) /\ t e. RR ) -> ( `' h " { t } ) e. dom vol ) |
243 |
240 242
|
sylan |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( `' h " { t } ) e. dom vol ) |
244 |
237 243
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> ( `' h " { t } ) e. dom vol ) |
245 |
|
inmbl |
|- ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } e. dom vol /\ ( `' h " { t } ) e. dom vol ) -> ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) e. dom vol ) |
246 |
234 244 245
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) e. dom vol ) |
247 |
190 246
|
eqeltrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
248 |
247
|
ralrimiva |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> A. t e. ran h { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
249 |
|
finiunmbl |
|- ( ( ran h e. Fin /\ A. t e. ran h { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) -> U_ t e. ran h { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
250 |
42 248 249
|
syl2anc |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> U_ t e. ran h { x e. ( `' h " { t } ) | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
251 |
173 250
|
eqeltrrd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
252 |
|
unrab |
|- ( { x e. RR | ( h ` x ) e. ( -oo (,) 0 ) } u. { x e. RR | ( h ` x ) e. ( 0 (,) +oo ) } ) = { x e. RR | ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) } |
253 |
28
|
feqmptd |
|- ( h e. dom S.1 -> h = ( x e. RR |-> ( h ` x ) ) ) |
254 |
253
|
cnveqd |
|- ( h e. dom S.1 -> `' h = `' ( x e. RR |-> ( h ` x ) ) ) |
255 |
254
|
imaeq1d |
|- ( h e. dom S.1 -> ( `' h " ( -oo (,) 0 ) ) = ( `' ( x e. RR |-> ( h ` x ) ) " ( -oo (,) 0 ) ) ) |
256 |
|
eqid |
|- ( x e. RR |-> ( h ` x ) ) = ( x e. RR |-> ( h ` x ) ) |
257 |
256
|
mptpreima |
|- ( `' ( x e. RR |-> ( h ` x ) ) " ( -oo (,) 0 ) ) = { x e. RR | ( h ` x ) e. ( -oo (,) 0 ) } |
258 |
255 257
|
eqtrdi |
|- ( h e. dom S.1 -> ( `' h " ( -oo (,) 0 ) ) = { x e. RR | ( h ` x ) e. ( -oo (,) 0 ) } ) |
259 |
254
|
imaeq1d |
|- ( h e. dom S.1 -> ( `' h " ( 0 (,) +oo ) ) = ( `' ( x e. RR |-> ( h ` x ) ) " ( 0 (,) +oo ) ) ) |
260 |
256
|
mptpreima |
|- ( `' ( x e. RR |-> ( h ` x ) ) " ( 0 (,) +oo ) ) = { x e. RR | ( h ` x ) e. ( 0 (,) +oo ) } |
261 |
259 260
|
eqtrdi |
|- ( h e. dom S.1 -> ( `' h " ( 0 (,) +oo ) ) = { x e. RR | ( h ` x ) e. ( 0 (,) +oo ) } ) |
262 |
258 261
|
uneq12d |
|- ( h e. dom S.1 -> ( ( `' h " ( -oo (,) 0 ) ) u. ( `' h " ( 0 (,) +oo ) ) ) = ( { x e. RR | ( h ` x ) e. ( -oo (,) 0 ) } u. { x e. RR | ( h ` x ) e. ( 0 (,) +oo ) } ) ) |
263 |
28
|
ffvelrnda |
|- ( ( h e. dom S.1 /\ x e. RR ) -> ( h ` x ) e. RR ) |
264 |
|
0re |
|- 0 e. RR |
265 |
|
lttri2 |
|- ( ( ( h ` x ) e. RR /\ 0 e. RR ) -> ( ( h ` x ) =/= 0 <-> ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) ) ) |
266 |
264 265
|
mpan2 |
|- ( ( h ` x ) e. RR -> ( ( h ` x ) =/= 0 <-> ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) ) ) |
267 |
|
ibar |
|- ( ( h ` x ) e. RR -> ( ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) <-> ( ( h ` x ) e. RR /\ ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) ) ) ) |
268 |
|
andi |
|- ( ( ( h ` x ) e. RR /\ ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) ) <-> ( ( ( h ` x ) e. RR /\ ( h ` x ) < 0 ) \/ ( ( h ` x ) e. RR /\ 0 < ( h ` x ) ) ) ) |
269 |
|
0xr |
|- 0 e. RR* |
270 |
|
elioomnf |
|- ( 0 e. RR* -> ( ( h ` x ) e. ( -oo (,) 0 ) <-> ( ( h ` x ) e. RR /\ ( h ` x ) < 0 ) ) ) |
271 |
|
elioopnf |
|- ( 0 e. RR* -> ( ( h ` x ) e. ( 0 (,) +oo ) <-> ( ( h ` x ) e. RR /\ 0 < ( h ` x ) ) ) ) |
272 |
270 271
|
orbi12d |
|- ( 0 e. RR* -> ( ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) <-> ( ( ( h ` x ) e. RR /\ ( h ` x ) < 0 ) \/ ( ( h ` x ) e. RR /\ 0 < ( h ` x ) ) ) ) ) |
273 |
269 272
|
ax-mp |
|- ( ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) <-> ( ( ( h ` x ) e. RR /\ ( h ` x ) < 0 ) \/ ( ( h ` x ) e. RR /\ 0 < ( h ` x ) ) ) ) |
274 |
268 273
|
bitr4i |
|- ( ( ( h ` x ) e. RR /\ ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) ) <-> ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) ) |
275 |
267 274
|
bitrdi |
|- ( ( h ` x ) e. RR -> ( ( ( h ` x ) < 0 \/ 0 < ( h ` x ) ) <-> ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) ) ) |
276 |
266 275
|
bitrd |
|- ( ( h ` x ) e. RR -> ( ( h ` x ) =/= 0 <-> ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) ) ) |
277 |
263 276
|
syl |
|- ( ( h e. dom S.1 /\ x e. RR ) -> ( ( h ` x ) =/= 0 <-> ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) ) ) |
278 |
277
|
rabbidva |
|- ( h e. dom S.1 -> { x e. RR | ( h ` x ) =/= 0 } = { x e. RR | ( ( h ` x ) e. ( -oo (,) 0 ) \/ ( h ` x ) e. ( 0 (,) +oo ) ) } ) |
279 |
252 262 278
|
3eqtr4a |
|- ( h e. dom S.1 -> ( ( `' h " ( -oo (,) 0 ) ) u. ( `' h " ( 0 (,) +oo ) ) ) = { x e. RR | ( h ` x ) =/= 0 } ) |
280 |
|
i1fima |
|- ( h e. dom S.1 -> ( `' h " ( -oo (,) 0 ) ) e. dom vol ) |
281 |
|
i1fima |
|- ( h e. dom S.1 -> ( `' h " ( 0 (,) +oo ) ) e. dom vol ) |
282 |
|
unmbl |
|- ( ( ( `' h " ( -oo (,) 0 ) ) e. dom vol /\ ( `' h " ( 0 (,) +oo ) ) e. dom vol ) -> ( ( `' h " ( -oo (,) 0 ) ) u. ( `' h " ( 0 (,) +oo ) ) ) e. dom vol ) |
283 |
280 281 282
|
syl2anc |
|- ( h e. dom S.1 -> ( ( `' h " ( -oo (,) 0 ) ) u. ( `' h " ( 0 (,) +oo ) ) ) e. dom vol ) |
284 |
279 283
|
eqeltrrd |
|- ( h e. dom S.1 -> { x e. RR | ( h ` x ) =/= 0 } e. dom vol ) |
285 |
284
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> { x e. RR | ( h ` x ) =/= 0 } e. dom vol ) |
286 |
|
inmbl |
|- ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol /\ { x e. RR | ( h ` x ) =/= 0 } e. dom vol ) -> ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) e. dom vol ) |
287 |
251 285 286
|
syl2anc |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) e. dom vol ) |
288 |
287
|
adantr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) e. dom vol ) |
289 |
24
|
recnd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. CC ) |
290 |
289
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. CC ) |
291 |
|
1cnd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> 1 e. CC ) |
292 |
|
simplr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> t e. RR ) |
293 |
14
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( v / 3 ) e. RR ) |
294 |
20
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( v / 3 ) =/= 0 ) |
295 |
292 293 294
|
redivcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( t / ( v / 3 ) ) e. RR ) |
296 |
295
|
recnd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( t / ( v / 3 ) ) e. CC ) |
297 |
290 291 296
|
subadd2d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) = ( t / ( v / 3 ) ) <-> ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) ) |
298 |
|
eqcom |
|- ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) = ( t / ( v / 3 ) ) <-> ( t / ( v / 3 ) ) = ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) ) |
299 |
|
recn |
|- ( t e. RR -> t e. CC ) |
300 |
299
|
ad2antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> t e. CC ) |
301 |
26
|
recnd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) e. CC ) |
302 |
301
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) e. CC ) |
303 |
14
|
recnd |
|- ( v e. RR+ -> ( v / 3 ) e. CC ) |
304 |
303
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( v / 3 ) e. CC ) |
305 |
300 302 304 294
|
divmul3d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( t / ( v / 3 ) ) = ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) <-> t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) ) |
306 |
298 305
|
syl5bb |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) = ( t / ( v / 3 ) ) <-> t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) ) |
307 |
297 306
|
bitr3d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <-> t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) ) |
308 |
307
|
rabbidva |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } = { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) |
309 |
|
imaundi |
|- ( `' F " ( { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } u. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) = ( ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
310 |
224
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> `' F = `' ( x e. RR |-> ( F ` x ) ) ) |
311 |
|
zre |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. ZZ -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
312 |
311
|
adantl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
313 |
14
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( v / 3 ) e. RR ) |
314 |
312 313
|
remulcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) e. RR ) |
315 |
314
|
rexrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) e. RR* ) |
316 |
|
peano2z |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. ZZ -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. ZZ ) |
317 |
316
|
zred |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. ZZ -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR ) |
318 |
317
|
adantl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR ) |
319 |
313 318
|
remulcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR ) |
320 |
319
|
rexrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR* ) |
321 |
|
zcn |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. ZZ -> ( ( t / ( v / 3 ) ) + 1 ) e. CC ) |
322 |
321
|
adantl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( t / ( v / 3 ) ) + 1 ) e. CC ) |
323 |
303
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( v / 3 ) e. CC ) |
324 |
322 323
|
mulcomd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) = ( ( v / 3 ) x. ( ( t / ( v / 3 ) ) + 1 ) ) ) |
325 |
69
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( v / 3 ) e. RR+ ) |
326 |
311
|
ltp1d |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. ZZ -> ( ( t / ( v / 3 ) ) + 1 ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) |
327 |
326
|
adantl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( t / ( v / 3 ) ) + 1 ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) |
328 |
312 318 325 327
|
ltmul2dd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( v / 3 ) x. ( ( t / ( v / 3 ) ) + 1 ) ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) |
329 |
324 328
|
eqbrtrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) |
330 |
|
snunioo |
|- ( ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) e. RR* /\ ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR* /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) -> ( { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } u. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) = ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
331 |
315 320 329 330
|
syl3anc |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } u. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) = ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
332 |
310 331
|
imaeq12d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( `' F " ( { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } u. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) = ( `' ( x e. RR |-> ( F ` x ) ) " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
333 |
309 332
|
eqtr3id |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) = ( `' ( x e. RR |-> ( F ` x ) ) " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
334 |
226
|
mptpreima |
|- ( `' ( x e. RR |-> ( F ` x ) ) " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) = { x e. RR | ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) } |
335 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> F : RR --> RR ) |
336 |
335
|
ffvelrnda |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
337 |
336
|
3biant1d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
338 |
337
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
339 |
311
|
adantl |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
340 |
336
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( F ` x ) e. RR ) |
341 |
69
|
ad4antlr |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( v / 3 ) e. RR+ ) |
342 |
339 340 341
|
lemuldivd |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) <-> ( ( t / ( v / 3 ) ) + 1 ) <_ ( ( F ` x ) / ( v / 3 ) ) ) ) |
343 |
317
|
adantl |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR ) |
344 |
340 343 341
|
ltdivmuld |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) <-> ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
345 |
344
|
bicomd |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) <-> ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) |
346 |
342 345
|
anbi12d |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) <_ ( ( F ` x ) / ( v / 3 ) ) /\ ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
347 |
338 346
|
bitr3d |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( F ` x ) e. RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) <_ ( ( F ` x ) / ( v / 3 ) ) /\ ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
348 |
|
elico2 |
|- ( ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) e. RR /\ ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR* ) -> ( ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
349 |
314 320 348
|
syl2anc |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
350 |
349
|
adantlr |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( F ` x ) e. RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) <_ ( F ` x ) /\ ( F ` x ) < ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
351 |
|
eqcom |
|- ( ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <-> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) = ( ( t / ( v / 3 ) ) + 1 ) ) |
352 |
22
|
adantlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( F ` x ) / ( v / 3 ) ) e. RR ) |
353 |
|
flbi |
|- ( ( ( ( F ` x ) / ( v / 3 ) ) e. RR /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) = ( ( t / ( v / 3 ) ) + 1 ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) <_ ( ( F ` x ) / ( v / 3 ) ) /\ ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
354 |
352 353
|
sylan |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) = ( ( t / ( v / 3 ) ) + 1 ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) <_ ( ( F ` x ) / ( v / 3 ) ) /\ ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
355 |
351 354
|
syl5bb |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) <_ ( ( F ` x ) / ( v / 3 ) ) /\ ( ( F ` x ) / ( v / 3 ) ) < ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) |
356 |
347 350 355
|
3bitr4d |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) ) |
357 |
356
|
an32s |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) /\ x e. RR ) -> ( ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) <-> ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) ) |
358 |
357
|
rabbidva |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> { x e. RR | ( F ` x ) e. ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) } = { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } ) |
359 |
334 358
|
eqtrid |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( `' ( x e. RR |-> ( F ` x ) ) " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) [,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) = { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } ) |
360 |
333 359
|
eqtrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) = { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } ) |
361 |
1
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> F e. MblFn ) |
362 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> F : RR --> RR ) |
363 |
|
mbfimasn |
|- ( ( F e. MblFn /\ F : RR --> RR /\ ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) e. RR ) -> ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) e. dom vol ) |
364 |
361 362 314 363
|
syl3anc |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) e. dom vol ) |
365 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) e. dom vol ) |
366 |
1 5 365
|
syl2anc |
|- ( ph -> ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) e. dom vol ) |
367 |
366
|
ad4antr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) e. dom vol ) |
368 |
|
unmbl |
|- ( ( ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) e. dom vol /\ ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) e. dom vol ) -> ( ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) e. dom vol ) |
369 |
364 367 368
|
syl2anc |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> ( ( `' F " { ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( ( t / ( v / 3 ) ) + 1 ) x. ( v / 3 ) ) (,) ( ( v / 3 ) x. ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) ) ) ) e. dom vol ) |
370 |
360 369
|
eqeltrrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } e. dom vol ) |
371 |
|
simpr |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) -> ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
372 |
352
|
flcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. ZZ ) |
373 |
372
|
adantr |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. ZZ ) |
374 |
371 373
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) -> ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) |
375 |
374
|
stoic1a |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) /\ -. ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> -. ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
376 |
375
|
an32s |
|- ( ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ -. ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) /\ x e. RR ) -> -. ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
377 |
376
|
ralrimiva |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ -. ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> A. x e. RR -. ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
378 |
|
rabeq0 |
|- ( { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } = (/) <-> A. x e. RR -. ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) |
379 |
377 378
|
sylibr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ -. ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } = (/) ) |
380 |
|
0mbl |
|- (/) e. dom vol |
381 |
379 380
|
eqeltrdi |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ -. ( ( t / ( v / 3 ) ) + 1 ) e. ZZ ) -> { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } e. dom vol ) |
382 |
370 381
|
pm2.61dan |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> { x e. RR | ( ( t / ( v / 3 ) ) + 1 ) = ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) } e. dom vol ) |
383 |
308 382
|
eqeltrrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } e. dom vol ) |
384 |
|
inmbl |
|- ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) e. dom vol /\ { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } e. dom vol ) -> ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) e. dom vol ) |
385 |
288 383 384
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) e. dom vol ) |
386 |
|
rabiun |
|- { x e. U_ t e. ran h ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = U_ t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } |
387 |
|
rabeq |
|- ( U_ t e. ran h ( `' h " { t } ) = RR -> { x e. U_ t e. ran h ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
388 |
169 387
|
syl |
|- ( h e. dom S.1 -> { x e. U_ t e. ran h ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
389 |
386 388
|
eqtr3id |
|- ( h e. dom S.1 -> U_ t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
390 |
389
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> U_ t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } ) |
391 |
177
|
notbid |
|- ( ( h e. dom S.1 /\ x e. ( `' h " { t } ) ) -> ( -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) <-> -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t ) ) |
392 |
391
|
rabbidva |
|- ( h e. dom S.1 -> { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
393 |
|
inrab2 |
|- ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) = { x e. ( RR i^i ( `' h " { t } ) ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } |
394 |
|
rabeq |
|- ( ( RR i^i ( `' h " { t } ) ) = ( `' h " { t } ) -> { x e. ( RR i^i ( `' h " { t } ) ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } = { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
395 |
185 394
|
syl |
|- ( h e. dom S.1 -> { x e. ( RR i^i ( `' h " { t } ) ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } = { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
396 |
393 395
|
eqtrid |
|- ( h e. dom S.1 -> ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) = { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
397 |
392 396
|
eqtr4d |
|- ( h e. dom S.1 -> { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) ) |
398 |
397
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } = ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) ) |
399 |
|
imaundi |
|- ( `' F " ( { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } u. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) = ( ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) |
400 |
14 20
|
jca |
|- ( v e. RR+ -> ( ( v / 3 ) e. RR /\ ( v / 3 ) =/= 0 ) ) |
401 |
|
redivcl |
|- ( ( t e. RR /\ ( v / 3 ) e. RR /\ ( v / 3 ) =/= 0 ) -> ( t / ( v / 3 ) ) e. RR ) |
402 |
401
|
3expb |
|- ( ( t e. RR /\ ( ( v / 3 ) e. RR /\ ( v / 3 ) =/= 0 ) ) -> ( t / ( v / 3 ) ) e. RR ) |
403 |
400 402
|
sylan2 |
|- ( ( t e. RR /\ v e. RR+ ) -> ( t / ( v / 3 ) ) e. RR ) |
404 |
403
|
ancoms |
|- ( ( v e. RR+ /\ t e. RR ) -> ( t / ( v / 3 ) ) e. RR ) |
405 |
404
|
adantll |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( t / ( v / 3 ) ) e. RR ) |
406 |
405 204
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
407 |
|
peano2re |
|- ( ( ( t / ( v / 3 ) ) + 1 ) e. RR -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR ) |
408 |
|
reflcl |
|- ( ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR -> ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR ) |
409 |
406 407 408
|
3syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR ) |
410 |
14
|
ad2antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( v / 3 ) e. RR ) |
411 |
409 410
|
remulcld |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR ) |
412 |
411
|
rexrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR* ) |
413 |
|
pnfxr |
|- +oo e. RR* |
414 |
413
|
a1i |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> +oo e. RR* ) |
415 |
|
ltpnf |
|- ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) < +oo ) |
416 |
411 415
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) < +oo ) |
417 |
|
snunioo |
|- ( ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR* /\ +oo e. RR* /\ ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) < +oo ) -> ( { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } u. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) = ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) |
418 |
412 414 416 417
|
syl3anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } u. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) = ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) |
419 |
418
|
imaeq2d |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( `' F " ( { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } u. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) = ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) ) |
420 |
399 419
|
eqtr3id |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) = ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) ) |
421 |
224
|
imaeq1d |
|- ( ph -> ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) = ( `' ( x e. RR |-> ( F ` x ) ) " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) ) |
422 |
226
|
mptpreima |
|- ( `' ( x e. RR |-> ( F ` x ) ) " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) = { x e. RR | ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) } |
423 |
421 422
|
eqtrdi |
|- ( ph -> ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) = { x e. RR | ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) } ) |
424 |
423
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) ) = { x e. RR | ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) } ) |
425 |
406 407
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR ) |
426 |
425
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR ) |
427 |
|
flflp1 |
|- ( ( ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) e. RR /\ ( ( F ` x ) / ( v / 3 ) ) e. RR ) -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) <_ ( ( F ` x ) / ( v / 3 ) ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) < ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) + 1 ) ) ) |
428 |
426 352 427
|
syl2anc |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) <_ ( ( F ` x ) / ( v / 3 ) ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) < ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) + 1 ) ) ) |
429 |
411
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR ) |
430 |
|
elicopnf |
|- ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR -> ( ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) <-> ( ( F ` x ) e. RR /\ ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) <_ ( F ` x ) ) ) ) |
431 |
429 430
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) <-> ( ( F ` x ) e. RR /\ ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) <_ ( F ` x ) ) ) ) |
432 |
336
|
biantrurd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) <_ ( F ` x ) <-> ( ( F ` x ) e. RR /\ ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) <_ ( F ` x ) ) ) ) |
433 |
409
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) e. RR ) |
434 |
69
|
ad3antlr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( v / 3 ) e. RR+ ) |
435 |
433 336 434
|
lemuldivd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) <_ ( F ` x ) <-> ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) <_ ( ( F ` x ) / ( v / 3 ) ) ) ) |
436 |
431 432 435
|
3bitr2d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) <-> ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) <_ ( ( F ` x ) / ( v / 3 ) ) ) ) |
437 |
406
|
adantr |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( t / ( v / 3 ) ) + 1 ) e. RR ) |
438 |
352 23
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) e. RR ) |
439 |
|
1red |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> 1 e. RR ) |
440 |
437 438 439
|
ltadd1d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( t / ( v / 3 ) ) + 1 ) < ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <-> ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) < ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) + 1 ) ) ) |
441 |
428 436 440
|
3bitr4d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) <-> ( ( t / ( v / 3 ) ) + 1 ) < ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) ) ) |
442 |
295 439 438
|
ltaddsubd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( t / ( v / 3 ) ) + 1 ) < ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) <-> ( t / ( v / 3 ) ) < ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) ) ) |
443 |
441 442
|
bitrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) <-> ( t / ( v / 3 ) ) < ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) ) ) |
444 |
438 25
|
syl |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) e. RR ) |
445 |
292 444 434
|
ltdivmul2d |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( t / ( v / 3 ) ) < ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) <-> t < ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) ) ) |
446 |
444 293
|
remulcld |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) e. RR ) |
447 |
292 446
|
ltnled |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( t < ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <-> -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t ) ) |
448 |
443 445 447
|
3bitrd |
|- ( ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) /\ x e. RR ) -> ( ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) <-> -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t ) ) |
449 |
448
|
rabbidva |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> { x e. RR | ( F ` x ) e. ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) [,) +oo ) } = { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
450 |
420 424 449
|
3eqtrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) = { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } ) |
451 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> F e. MblFn ) |
452 |
|
mbfimasn |
|- ( ( F e. MblFn /\ F : RR --> RR /\ ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) e. RR ) -> ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) e. dom vol ) |
453 |
451 335 411 452
|
syl3anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) e. dom vol ) |
454 |
|
mbfima |
|- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) e. dom vol ) |
455 |
1 5 454
|
syl2anc |
|- ( ph -> ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) e. dom vol ) |
456 |
455
|
ad3antrrr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) e. dom vol ) |
457 |
|
unmbl |
|- ( ( ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) e. dom vol /\ ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) e. dom vol ) -> ( ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) e. dom vol ) |
458 |
453 456 457
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( `' F " { ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) } ) u. ( `' F " ( ( ( |_ ` ( ( ( t / ( v / 3 ) ) + 1 ) + 1 ) ) x. ( v / 3 ) ) (,) +oo ) ) ) e. dom vol ) |
459 |
450 458
|
eqeltrrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } e. dom vol ) |
460 |
237 459
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } e. dom vol ) |
461 |
|
inmbl |
|- ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } e. dom vol /\ ( `' h " { t } ) e. dom vol ) -> ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) e. dom vol ) |
462 |
460 244 461
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ t } i^i ( `' h " { t } ) ) e. dom vol ) |
463 |
398 462
|
eqeltrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ran h ) -> { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
464 |
463
|
ralrimiva |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> A. t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
465 |
|
finiunmbl |
|- ( ( ran h e. Fin /\ A. t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) -> U_ t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
466 |
42 464 465
|
syl2anc |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> U_ t e. ran h { x e. ( `' h " { t } ) | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
467 |
390 466
|
eqeltrrd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol ) |
468 |
254
|
imaeq1d |
|- ( h e. dom S.1 -> ( `' h " { 0 } ) = ( `' ( x e. RR |-> ( h ` x ) ) " { 0 } ) ) |
469 |
256
|
mptpreima |
|- ( `' ( x e. RR |-> ( h ` x ) ) " { 0 } ) = { x e. RR | ( h ` x ) e. { 0 } } |
470 |
141
|
elsn |
|- ( ( h ` x ) e. { 0 } <-> ( h ` x ) = 0 ) |
471 |
470
|
rabbii |
|- { x e. RR | ( h ` x ) e. { 0 } } = { x e. RR | ( h ` x ) = 0 } |
472 |
469 471
|
eqtri |
|- ( `' ( x e. RR |-> ( h ` x ) ) " { 0 } ) = { x e. RR | ( h ` x ) = 0 } |
473 |
468 472
|
eqtrdi |
|- ( h e. dom S.1 -> ( `' h " { 0 } ) = { x e. RR | ( h ` x ) = 0 } ) |
474 |
|
i1fima |
|- ( h e. dom S.1 -> ( `' h " { 0 } ) e. dom vol ) |
475 |
473 474
|
eqeltrrd |
|- ( h e. dom S.1 -> { x e. RR | ( h ` x ) = 0 } e. dom vol ) |
476 |
475
|
ad2antlr |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> { x e. RR | ( h ` x ) = 0 } e. dom vol ) |
477 |
|
unmbl |
|- ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } e. dom vol /\ { x e. RR | ( h ` x ) = 0 } e. dom vol ) -> ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) e. dom vol ) |
478 |
467 476 477
|
syl2anc |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) e. dom vol ) |
479 |
478
|
adantr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) e. dom vol ) |
480 |
254
|
imaeq1d |
|- ( h e. dom S.1 -> ( `' h " { t } ) = ( `' ( x e. RR |-> ( h ` x ) ) " { t } ) ) |
481 |
256
|
mptpreima |
|- ( `' ( x e. RR |-> ( h ` x ) ) " { t } ) = { x e. RR | ( h ` x ) e. { t } } |
482 |
141
|
elsn |
|- ( ( h ` x ) e. { t } <-> ( h ` x ) = t ) |
483 |
|
eqcom |
|- ( ( h ` x ) = t <-> t = ( h ` x ) ) |
484 |
482 483
|
bitri |
|- ( ( h ` x ) e. { t } <-> t = ( h ` x ) ) |
485 |
484
|
rabbii |
|- { x e. RR | ( h ` x ) e. { t } } = { x e. RR | t = ( h ` x ) } |
486 |
481 485
|
eqtri |
|- ( `' ( x e. RR |-> ( h ` x ) ) " { t } ) = { x e. RR | t = ( h ` x ) } |
487 |
480 486
|
eqtrdi |
|- ( h e. dom S.1 -> ( `' h " { t } ) = { x e. RR | t = ( h ` x ) } ) |
488 |
487
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( `' h " { t } ) = { x e. RR | t = ( h ` x ) } ) |
489 |
488 243
|
eqeltrrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> { x e. RR | t = ( h ` x ) } e. dom vol ) |
490 |
|
inmbl |
|- ( ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) e. dom vol /\ { x e. RR | t = ( h ` x ) } e. dom vol ) -> ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) e. dom vol ) |
491 |
479 489 490
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) e. dom vol ) |
492 |
|
unmbl |
|- ( ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) e. dom vol /\ ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) e. dom vol ) -> ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) u. ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) ) e. dom vol ) |
493 |
385 491 492
|
syl2anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. RR ) -> ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) u. ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) ) e. dom vol ) |
494 |
160 493
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( ( ( { x e. RR | ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } i^i { x e. RR | ( h ` x ) =/= 0 } ) i^i { x e. RR | t = ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) } ) u. ( ( { x e. RR | -. ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) } u. { x e. RR | ( h ` x ) = 0 } ) i^i { x e. RR | t = ( h ` x ) } ) ) e. dom vol ) |
495 |
155 494
|
eqeltrid |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) e. dom vol ) |
496 |
|
mblvol |
|- ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) e. dom vol -> ( vol ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) = ( vol* ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) ) |
497 |
495 496
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( vol ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) = ( vol* ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) ) |
498 |
|
eldifsn |
|- ( t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) <-> ( t e. ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) /\ t =/= 0 ) ) |
499 |
158
|
anim1d |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( ( t e. ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) /\ t =/= 0 ) -> ( t e. RR /\ t =/= 0 ) ) ) |
500 |
498 499
|
syl5bi |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) -> ( t e. RR /\ t =/= 0 ) ) ) |
501 |
500
|
imdistani |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) ) |
502 |
129
|
a1i |
|- ( h e. dom S.1 -> ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) = { x e. RR | if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } } ) |
503 |
468 469
|
eqtrdi |
|- ( h e. dom S.1 -> ( `' h " { 0 } ) = { x e. RR | ( h ` x ) e. { 0 } } ) |
504 |
502 503
|
ineq12d |
|- ( h e. dom S.1 -> ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) i^i ( `' h " { 0 } ) ) = ( { x e. RR | if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } } i^i { x e. RR | ( h ` x ) e. { 0 } } ) ) |
505 |
|
inrab |
|- ( { x e. RR | if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } } i^i { x e. RR | ( h ` x ) e. { 0 } } ) = { x e. RR | ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) } |
506 |
504 505
|
eqtrdi |
|- ( h e. dom S.1 -> ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) i^i ( `' h " { 0 } ) ) = { x e. RR | ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) } ) |
507 |
506
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) i^i ( `' h " { 0 } ) ) = { x e. RR | ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) } ) |
508 |
145
|
biimpri |
|- ( ( h ` x ) = 0 -> -. ( h ` x ) =/= 0 ) |
509 |
508
|
intnand |
|- ( ( h ` x ) = 0 -> -. ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) ) |
510 |
509
|
iffalsed |
|- ( ( h ` x ) = 0 -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = ( h ` x ) ) |
511 |
|
eqtr |
|- ( ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = ( h ` x ) /\ ( h ` x ) = 0 ) -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = 0 ) |
512 |
510 511
|
mpancom |
|- ( ( h ` x ) = 0 -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = 0 ) |
513 |
512
|
adantl |
|- ( ( ( t =/= 0 /\ x e. RR ) /\ ( h ` x ) = 0 ) -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) = 0 ) |
514 |
|
simpll |
|- ( ( ( t =/= 0 /\ x e. RR ) /\ ( h ` x ) = 0 ) -> t =/= 0 ) |
515 |
514
|
necomd |
|- ( ( ( t =/= 0 /\ x e. RR ) /\ ( h ` x ) = 0 ) -> 0 =/= t ) |
516 |
513 515
|
eqnetrd |
|- ( ( ( t =/= 0 /\ x e. RR ) /\ ( h ` x ) = 0 ) -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) =/= t ) |
517 |
516
|
ex |
|- ( ( t =/= 0 /\ x e. RR ) -> ( ( h ` x ) = 0 -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) =/= t ) ) |
518 |
|
orcom |
|- ( ( -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } \/ -. ( h ` x ) e. { 0 } ) <-> ( -. ( h ` x ) e. { 0 } \/ -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } ) ) |
519 |
|
ianor |
|- ( -. ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) <-> ( -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } \/ -. ( h ` x ) e. { 0 } ) ) |
520 |
|
imor |
|- ( ( ( h ` x ) e. { 0 } -> -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } ) <-> ( -. ( h ` x ) e. { 0 } \/ -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } ) ) |
521 |
518 519 520
|
3bitr4i |
|- ( -. ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) <-> ( ( h ` x ) e. { 0 } -> -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } ) ) |
522 |
143
|
necon3bbii |
|- ( -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } <-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) =/= t ) |
523 |
470 522
|
imbi12i |
|- ( ( ( h ` x ) e. { 0 } -> -. if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } ) <-> ( ( h ` x ) = 0 -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) =/= t ) ) |
524 |
521 523
|
bitri |
|- ( -. ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) <-> ( ( h ` x ) = 0 -> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) =/= t ) ) |
525 |
517 524
|
sylibr |
|- ( ( t =/= 0 /\ x e. RR ) -> -. ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) ) |
526 |
525
|
ralrimiva |
|- ( t =/= 0 -> A. x e. RR -. ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) ) |
527 |
|
rabeq0 |
|- ( { x e. RR | ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) } = (/) <-> A. x e. RR -. ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) ) |
528 |
526 527
|
sylibr |
|- ( t =/= 0 -> { x e. RR | ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) } = (/) ) |
529 |
528
|
ad2antll |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> { x e. RR | ( if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) e. { t } /\ ( h ` x ) e. { 0 } ) } = (/) ) |
530 |
507 529
|
eqtrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) i^i ( `' h " { 0 } ) ) = (/) ) |
531 |
|
imassrn |
|- ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ ran `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) |
532 |
|
dfdm4 |
|- dom ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) = ran `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) |
533 |
142 128
|
dmmpti |
|- dom ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) = RR |
534 |
532 533
|
eqtr3i |
|- ran `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) = RR |
535 |
531 534
|
sseqtri |
|- ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ RR |
536 |
|
reldisj |
|- ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ RR -> ( ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) i^i ( `' h " { 0 } ) ) = (/) <-> ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ ( RR \ ( `' h " { 0 } ) ) ) ) |
537 |
535 536
|
ax-mp |
|- ( ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) i^i ( `' h " { 0 } ) ) = (/) <-> ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ ( RR \ ( `' h " { 0 } ) ) ) |
538 |
530 537
|
sylib |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ ( RR \ ( `' h " { 0 } ) ) ) |
539 |
|
ffun |
|- ( h : RR --> RR -> Fun h ) |
540 |
|
difpreima |
|- ( Fun h -> ( `' h " ( ran h \ { 0 } ) ) = ( ( `' h " ran h ) \ ( `' h " { 0 } ) ) ) |
541 |
539 540
|
syl |
|- ( h : RR --> RR -> ( `' h " ( ran h \ { 0 } ) ) = ( ( `' h " ran h ) \ ( `' h " { 0 } ) ) ) |
542 |
|
fdm |
|- ( h : RR --> RR -> dom h = RR ) |
543 |
162 542
|
eqtrid |
|- ( h : RR --> RR -> ( `' h " ran h ) = RR ) |
544 |
543
|
difeq1d |
|- ( h : RR --> RR -> ( ( `' h " ran h ) \ ( `' h " { 0 } ) ) = ( RR \ ( `' h " { 0 } ) ) ) |
545 |
541 544
|
eqtrd |
|- ( h : RR --> RR -> ( `' h " ( ran h \ { 0 } ) ) = ( RR \ ( `' h " { 0 } ) ) ) |
546 |
28 545
|
syl |
|- ( h e. dom S.1 -> ( `' h " ( ran h \ { 0 } ) ) = ( RR \ ( `' h " { 0 } ) ) ) |
547 |
546
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( `' h " ( ran h \ { 0 } ) ) = ( RR \ ( `' h " { 0 } ) ) ) |
548 |
538 547
|
sseqtrrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ ( `' h " ( ran h \ { 0 } ) ) ) |
549 |
|
imassrn |
|- ( `' h " ( ran h \ { 0 } ) ) C_ ran `' h |
550 |
549 182
|
sseqtrid |
|- ( h e. dom S.1 -> ( `' h " ( ran h \ { 0 } ) ) C_ RR ) |
551 |
550
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( `' h " ( ran h \ { 0 } ) ) C_ RR ) |
552 |
|
i1fima |
|- ( h e. dom S.1 -> ( `' h " ( ran h \ { 0 } ) ) e. dom vol ) |
553 |
|
mblvol |
|- ( ( `' h " ( ran h \ { 0 } ) ) e. dom vol -> ( vol ` ( `' h " ( ran h \ { 0 } ) ) ) = ( vol* ` ( `' h " ( ran h \ { 0 } ) ) ) ) |
554 |
552 553
|
syl |
|- ( h e. dom S.1 -> ( vol ` ( `' h " ( ran h \ { 0 } ) ) ) = ( vol* ` ( `' h " ( ran h \ { 0 } ) ) ) ) |
555 |
|
neldifsn |
|- -. 0 e. ( ran h \ { 0 } ) |
556 |
|
i1fima2 |
|- ( ( h e. dom S.1 /\ -. 0 e. ( ran h \ { 0 } ) ) -> ( vol ` ( `' h " ( ran h \ { 0 } ) ) ) e. RR ) |
557 |
555 556
|
mpan2 |
|- ( h e. dom S.1 -> ( vol ` ( `' h " ( ran h \ { 0 } ) ) ) e. RR ) |
558 |
554 557
|
eqeltrrd |
|- ( h e. dom S.1 -> ( vol* ` ( `' h " ( ran h \ { 0 } ) ) ) e. RR ) |
559 |
558
|
ad3antlr |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( vol* ` ( `' h " ( ran h \ { 0 } ) ) ) e. RR ) |
560 |
|
ovolsscl |
|- ( ( ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) C_ ( `' h " ( ran h \ { 0 } ) ) /\ ( `' h " ( ran h \ { 0 } ) ) C_ RR /\ ( vol* ` ( `' h " ( ran h \ { 0 } ) ) ) e. RR ) -> ( vol* ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) e. RR ) |
561 |
548 551 559 560
|
syl3anc |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ ( t e. RR /\ t =/= 0 ) ) -> ( vol* ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) e. RR ) |
562 |
501 561
|
syl |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( vol* ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) e. RR ) |
563 |
497 562
|
eqeltrd |
|- ( ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) /\ t e. ( ran ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) \ { 0 } ) ) -> ( vol ` ( `' ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) " { t } ) ) e. RR ) |
564 |
32 127 495 563
|
i1fd |
|- ( ( ( ph /\ h e. dom S.1 ) /\ v e. RR+ ) -> ( x e. RR |-> if ( ( ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) <_ ( h ` x ) /\ ( h ` x ) =/= 0 ) , ( ( ( |_ ` ( ( F ` x ) / ( v / 3 ) ) ) - 1 ) x. ( v / 3 ) ) , ( h ` x ) ) ) e. dom S.1 ) |