| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2addnc.f1 |
⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 2 |
|
itg2addnc.f2 |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 3 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 4 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 5 |
2 3 4
|
sylancl |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 7 |
6
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
|
rpre |
⊢ ( 𝑣 ∈ ℝ+ → 𝑣 ∈ ℝ ) |
| 9 |
|
3re |
⊢ 3 ∈ ℝ |
| 10 |
|
3ne0 |
⊢ 3 ≠ 0 |
| 11 |
9 10
|
pm3.2i |
⊢ ( 3 ∈ ℝ ∧ 3 ≠ 0 ) |
| 12 |
|
redivcl |
⊢ ( ( 𝑣 ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 13 |
12
|
3expb |
⊢ ( ( 𝑣 ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 3 ≠ 0 ) ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 14 |
8 11 13
|
sylancl |
⊢ ( 𝑣 ∈ ℝ+ → ( 𝑣 / 3 ) ∈ ℝ ) |
| 15 |
14
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 16 |
|
rpcnne0 |
⊢ ( 𝑣 ∈ ℝ+ → ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ) |
| 17 |
|
3cn |
⊢ 3 ∈ ℂ |
| 18 |
17 10
|
pm3.2i |
⊢ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) |
| 19 |
|
divne0 |
⊢ ( ( ( 𝑣 ∈ ℂ ∧ 𝑣 ≠ 0 ) ∧ ( 3 ∈ ℂ ∧ 3 ≠ 0 ) ) → ( 𝑣 / 3 ) ≠ 0 ) |
| 20 |
16 18 19
|
sylancl |
⊢ ( 𝑣 ∈ ℝ+ → ( 𝑣 / 3 ) ≠ 0 ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ≠ 0 ) |
| 22 |
7 15 21
|
redivcld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 23 |
|
reflcl |
⊢ ( ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℝ ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℝ ) |
| 25 |
|
peano2rem |
⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℝ → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ∈ ℝ ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ∈ ℝ ) |
| 27 |
26 15
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 28 |
|
i1ff |
⊢ ( ℎ ∈ dom ∫1 → ℎ : ℝ ⟶ ℝ ) |
| 29 |
28
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ℎ : ℝ ⟶ ℝ ) |
| 30 |
29
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ℎ ‘ 𝑥 ) ∈ ℝ ) |
| 31 |
27 30
|
ifcld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 32 |
31
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) : ℝ ⟶ ℝ ) |
| 33 |
|
fzfi |
⊢ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ∈ Fin |
| 34 |
|
ovex |
⊢ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ∈ V |
| 35 |
|
eqid |
⊢ ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) = ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) |
| 36 |
34 35
|
fnmpti |
⊢ ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) Fn ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 37 |
|
dffn4 |
⊢ ( ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) Fn ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↔ ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) : ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) –onto→ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 38 |
36 37
|
mpbi |
⊢ ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) : ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) –onto→ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) |
| 39 |
|
fofi |
⊢ ( ( ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ∈ Fin ∧ ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) : ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) –onto→ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ) → ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∈ Fin ) |
| 40 |
33 38 39
|
mp2an |
⊢ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∈ Fin |
| 41 |
|
i1frn |
⊢ ( ℎ ∈ dom ∫1 → ran ℎ ∈ Fin ) |
| 42 |
41
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ran ℎ ∈ Fin ) |
| 43 |
|
unfi |
⊢ ( ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∈ Fin ∧ ran ℎ ∈ Fin ) → ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ∈ Fin ) |
| 44 |
40 42 43
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ∈ Fin ) |
| 45 |
|
0zd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → 0 ∈ ℤ ) |
| 46 |
28
|
frnd |
⊢ ( ℎ ∈ dom ∫1 → ran ℎ ⊆ ℝ ) |
| 47 |
|
i1f0rn |
⊢ ( ℎ ∈ dom ∫1 → 0 ∈ ran ℎ ) |
| 48 |
|
elex2 |
⊢ ( 0 ∈ ran ℎ → ∃ 𝑥 𝑥 ∈ ran ℎ ) |
| 49 |
47 48
|
syl |
⊢ ( ℎ ∈ dom ∫1 → ∃ 𝑥 𝑥 ∈ ran ℎ ) |
| 50 |
|
n0 |
⊢ ( ran ℎ ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ran ℎ ) |
| 51 |
49 50
|
sylibr |
⊢ ( ℎ ∈ dom ∫1 → ran ℎ ≠ ∅ ) |
| 52 |
|
fimaxre2 |
⊢ ( ( ran ℎ ⊆ ℝ ∧ ran ℎ ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥 ) |
| 53 |
46 41 52
|
syl2anc |
⊢ ( ℎ ∈ dom ∫1 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥 ) |
| 54 |
|
suprcl |
⊢ ( ( ran ℎ ⊆ ℝ ∧ ran ℎ ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥 ) → sup ( ran ℎ , ℝ , < ) ∈ ℝ ) |
| 55 |
46 51 53 54
|
syl3anc |
⊢ ( ℎ ∈ dom ∫1 → sup ( ran ℎ , ℝ , < ) ∈ ℝ ) |
| 56 |
55
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → sup ( ran ℎ , ℝ , < ) ∈ ℝ ) |
| 57 |
56 15 21
|
redivcld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 58 |
|
peano2re |
⊢ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) ∈ ℝ → ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 60 |
|
ceicl |
⊢ ( ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ → - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℤ ) |
| 61 |
59 60
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℤ ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℤ ) |
| 63 |
22
|
flcld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℤ ) |
| 64 |
63
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℤ ) |
| 65 |
|
3nn |
⊢ 3 ∈ ℕ |
| 66 |
|
nnrp |
⊢ ( 3 ∈ ℕ → 3 ∈ ℝ+ ) |
| 67 |
65 66
|
ax-mp |
⊢ 3 ∈ ℝ+ |
| 68 |
|
rpdivcl |
⊢ ( ( 𝑣 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 69 |
67 68
|
mpan2 |
⊢ ( 𝑣 ∈ ℝ+ → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 70 |
69
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 71 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 72 |
71
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 73 |
|
elrege0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 74 |
72 73
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 75 |
74
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑥 ) ) |
| 76 |
7 70 75
|
divge0d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) |
| 77 |
|
flge0nn0 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℕ0 ) |
| 78 |
22 76 77
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℕ0 ) |
| 79 |
78
|
nn0ge0d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 81 |
46 51 53
|
3jca |
⊢ ( ℎ ∈ dom ∫1 → ( ran ℎ ⊆ ℝ ∧ ran ℎ ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥 ) ) |
| 82 |
81
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ran ℎ ⊆ ℝ ∧ ran ℎ ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥 ) ) |
| 83 |
|
ffn |
⊢ ( ℎ : ℝ ⟶ ℝ → ℎ Fn ℝ ) |
| 84 |
28 83
|
syl |
⊢ ( ℎ ∈ dom ∫1 → ℎ Fn ℝ ) |
| 85 |
|
dffn3 |
⊢ ( ℎ Fn ℝ ↔ ℎ : ℝ ⟶ ran ℎ ) |
| 86 |
84 85
|
sylib |
⊢ ( ℎ ∈ dom ∫1 → ℎ : ℝ ⟶ ran ℎ ) |
| 87 |
86
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ℎ : ℝ ⟶ ran ℎ ) |
| 88 |
87
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ℎ ‘ 𝑥 ) ∈ ran ℎ ) |
| 89 |
|
suprub |
⊢ ( ( ( ran ℎ ⊆ ℝ ∧ ran ℎ ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ℎ 𝑦 ≤ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ∈ ran ℎ ) → ( ℎ ‘ 𝑥 ) ≤ sup ( ran ℎ , ℝ , < ) ) |
| 90 |
82 88 89
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ℎ ‘ 𝑥 ) ≤ sup ( ran ℎ , ℝ , < ) ) |
| 91 |
|
letr |
⊢ ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ sup ( ran ℎ , ℝ , < ) ∈ ℝ ) → ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≤ sup ( ran ℎ , ℝ , < ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ sup ( ran ℎ , ℝ , < ) ) ) |
| 92 |
27 30 56 91
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≤ sup ( ran ℎ , ℝ , < ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ sup ( ran ℎ , ℝ , < ) ) ) |
| 93 |
26 56 70
|
lemuldivd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ sup ( ran ℎ , ℝ , < ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ≤ ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) ) ) |
| 94 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
| 95 |
24 94 57
|
lesubaddd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ≤ ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 96 |
93 95
|
bitrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ sup ( ran ℎ , ℝ , < ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 97 |
|
ceige |
⊢ ( ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ → ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 98 |
59 97
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 99 |
61
|
zred |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℝ ) |
| 100 |
|
letr |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℝ ∧ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ∧ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∧ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 101 |
24 59 99 100
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ∧ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 102 |
98 101
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 103 |
96 102
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ sup ( ran ℎ , ℝ , < ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 104 |
92 103
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≤ sup ( ran ℎ , ℝ , < ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 105 |
90 104
|
mpan2d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 106 |
105
|
adantrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 107 |
106
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 108 |
45 62 64 80 107
|
elfzd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ) |
| 109 |
|
eqid |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) |
| 110 |
|
oveq1 |
⊢ ( 𝑡 = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) → ( 𝑡 − 1 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ) |
| 111 |
110
|
oveq1d |
⊢ ( 𝑡 = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) → ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) |
| 112 |
111
|
rspceeqv |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ∧ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) → ∃ 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) = ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) |
| 113 |
108 109 112
|
sylancl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ∃ 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) = ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) |
| 114 |
|
ovex |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ V |
| 115 |
35
|
elrnmpt |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ V → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) = ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 116 |
114 115
|
ax-mp |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ↔ ∃ 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) = ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) |
| 117 |
113 116
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 118 |
|
elun1 |
⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 119 |
117 118
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 120 |
|
elun2 |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ ran ℎ → ( ℎ ‘ 𝑥 ) ∈ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 121 |
88 120
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ℎ ‘ 𝑥 ) ∈ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 122 |
121
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) → ( ℎ ‘ 𝑥 ) ∈ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 123 |
119 122
|
ifclda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 124 |
123
|
fmpttd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) : ℝ ⟶ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 125 |
124
|
frnd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ⊆ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) |
| 126 |
|
ssfi |
⊢ ( ( ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ∈ Fin ∧ ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ⊆ ( ran ( 𝑡 ∈ ( 0 ... - ( ⌊ ‘ - ( ( sup ( ran ℎ , ℝ , < ) / ( 𝑣 / 3 ) ) + 1 ) ) ) ↦ ( ( 𝑡 − 1 ) · ( 𝑣 / 3 ) ) ) ∪ ran ℎ ) ) → ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∈ Fin ) |
| 127 |
44 125 126
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∈ Fin ) |
| 128 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) |
| 129 |
128
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) = { 𝑥 ∈ ℝ ∣ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } } |
| 130 |
|
unrab |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) } ∪ { 𝑥 ∈ ℝ ∣ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) } ) = { 𝑥 ∈ ℝ ∣ ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) } |
| 131 |
|
inrab |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) = { 𝑥 ∈ ℝ ∣ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) } |
| 132 |
131
|
ineq1i |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) = ( { 𝑥 ∈ ℝ ∣ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) } ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) |
| 133 |
|
inrab |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) } ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) = { 𝑥 ∈ ℝ ∣ ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) } |
| 134 |
132 133
|
eqtri |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) = { 𝑥 ∈ ℝ ∣ ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) } |
| 135 |
|
unrab |
⊢ ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) = { 𝑥 ∈ ℝ ∣ ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) } |
| 136 |
135
|
ineq1i |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) = ( { 𝑥 ∈ ℝ ∣ ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) } ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) |
| 137 |
|
inrab |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) } ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) = { 𝑥 ∈ ℝ ∣ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) } |
| 138 |
136 137
|
eqtri |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) = { 𝑥 ∈ ℝ ∣ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) } |
| 139 |
134 138
|
uneq12i |
⊢ ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ) = ( { 𝑥 ∈ ℝ ∣ ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) } ∪ { 𝑥 ∈ ℝ ∣ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) } ) |
| 140 |
|
eqcom |
⊢ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = 𝑡 ↔ 𝑡 = if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) |
| 141 |
|
fvex |
⊢ ( ℎ ‘ 𝑥 ) ∈ V |
| 142 |
114 141
|
ifex |
⊢ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ V |
| 143 |
142
|
elsn |
⊢ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ↔ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = 𝑡 ) |
| 144 |
|
ianor |
⊢ ( ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ↔ ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ¬ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) |
| 145 |
|
nne |
⊢ ( ¬ ( ℎ ‘ 𝑥 ) ≠ 0 ↔ ( ℎ ‘ 𝑥 ) = 0 ) |
| 146 |
145
|
orbi2i |
⊢ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ¬ ( ℎ ‘ 𝑥 ) ≠ 0 ) ↔ ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ) |
| 147 |
144 146
|
bitr2i |
⊢ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ↔ ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) |
| 148 |
147
|
anbi1i |
⊢ ( ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ↔ ( ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) |
| 149 |
148
|
orbi2i |
⊢ ( ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) ↔ ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) ) |
| 150 |
|
eqif |
⊢ ( 𝑡 = if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ↔ ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) ) |
| 151 |
149 150
|
bitr4i |
⊢ ( ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) ↔ 𝑡 = if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) |
| 152 |
140 143 151
|
3bitr4i |
⊢ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ↔ ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) ) |
| 153 |
152
|
rabbii |
⊢ { 𝑥 ∈ ℝ ∣ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } } = { 𝑥 ∈ ℝ ∣ ( ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ∧ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ∨ ( ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∨ ( ℎ ‘ 𝑥 ) = 0 ) ∧ 𝑡 = ( ℎ ‘ 𝑥 ) ) ) } |
| 154 |
130 139 153
|
3eqtr4ri |
⊢ { 𝑥 ∈ ℝ ∣ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } } = ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ) |
| 155 |
129 154
|
eqtri |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) = ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ) |
| 156 |
|
eldifi |
⊢ ( 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) → 𝑡 ∈ ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ) |
| 157 |
32
|
frnd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ⊆ ℝ ) |
| 158 |
157
|
sseld |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑡 ∈ ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) → 𝑡 ∈ ℝ ) ) |
| 159 |
156 158
|
syl5 |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) → 𝑡 ∈ ℝ ) ) |
| 160 |
159
|
imdistani |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ) |
| 161 |
|
rabiun |
⊢ { 𝑥 ∈ ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } |
| 162 |
|
cnvimarndm |
⊢ ( ◡ ℎ “ ran ℎ ) = dom ℎ |
| 163 |
|
iunid |
⊢ ∪ 𝑡 ∈ ran ℎ { 𝑡 } = ran ℎ |
| 164 |
163
|
imaeq2i |
⊢ ( ◡ ℎ “ ∪ 𝑡 ∈ ran ℎ { 𝑡 } ) = ( ◡ ℎ “ ran ℎ ) |
| 165 |
|
imaiun |
⊢ ( ◡ ℎ “ ∪ 𝑡 ∈ ran ℎ { 𝑡 } ) = ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) |
| 166 |
164 165
|
eqtr3i |
⊢ ( ◡ ℎ “ ran ℎ ) = ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) |
| 167 |
162 166
|
eqtr3i |
⊢ dom ℎ = ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) |
| 168 |
28
|
fdmd |
⊢ ( ℎ ∈ dom ∫1 → dom ℎ = ℝ ) |
| 169 |
167 168
|
eqtr3id |
⊢ ( ℎ ∈ dom ∫1 → ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) = ℝ ) |
| 170 |
169
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) = ℝ ) |
| 171 |
|
rabeq |
⊢ ( ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) = ℝ → { 𝑥 ∈ ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 172 |
170 171
|
syl |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → { 𝑥 ∈ ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 173 |
161 172
|
eqtr3id |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 174 |
|
fniniseg |
⊢ ( ℎ Fn ℝ → ( 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) = 𝑡 ) ) ) |
| 175 |
28 83 174
|
3syl |
⊢ ( ℎ ∈ dom ∫1 → ( 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) = 𝑡 ) ) ) |
| 176 |
175
|
simplbda |
⊢ ( ( ℎ ∈ dom ∫1 ∧ 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ) → ( ℎ ‘ 𝑥 ) = 𝑡 ) |
| 177 |
176
|
breq2d |
⊢ ( ( ℎ ∈ dom ∫1 ∧ 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ↔ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 ) ) |
| 178 |
177
|
rabbidva |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 179 |
|
inrab2 |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) = { 𝑥 ∈ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } |
| 180 |
|
imassrn |
⊢ ( ◡ ℎ “ { 𝑡 } ) ⊆ ran ◡ ℎ |
| 181 |
|
dfdm4 |
⊢ dom ℎ = ran ◡ ℎ |
| 182 |
181 168
|
eqtr3id |
⊢ ( ℎ ∈ dom ∫1 → ran ◡ ℎ = ℝ ) |
| 183 |
180 182
|
sseqtrid |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 𝑡 } ) ⊆ ℝ ) |
| 184 |
|
sseqin2 |
⊢ ( ( ◡ ℎ “ { 𝑡 } ) ⊆ ℝ ↔ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) = ( ◡ ℎ “ { 𝑡 } ) ) |
| 185 |
183 184
|
sylib |
⊢ ( ℎ ∈ dom ∫1 → ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) = ( ◡ ℎ “ { 𝑡 } ) ) |
| 186 |
|
rabeq |
⊢ ( ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) = ( ◡ ℎ “ { 𝑡 } ) → { 𝑥 ∈ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 187 |
185 186
|
syl |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 188 |
179 187
|
eqtrid |
⊢ ( ℎ ∈ dom ∫1 → ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 189 |
178 188
|
eqtr4d |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ) |
| 190 |
189
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ) |
| 191 |
26
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ∈ ℝ ) |
| 192 |
46
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ran ℎ ⊆ ℝ ) |
| 193 |
192
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → 𝑡 ∈ ℝ ) |
| 194 |
193
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
| 195 |
69
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 196 |
191 194 195
|
lemuldivd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ≤ ( 𝑡 / ( 𝑣 / 3 ) ) ) ) |
| 197 |
24
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℝ ) |
| 198 |
|
1red |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
| 199 |
14
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 200 |
20
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ≠ 0 ) |
| 201 |
194 199 200
|
redivcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 202 |
197 198 201
|
lesubaddd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ≤ ( 𝑡 / ( 𝑣 / 3 ) ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 203 |
7
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 204 |
|
peano2re |
⊢ ( ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 205 |
201 204
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 206 |
|
reflcl |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℝ ) |
| 207 |
205 206
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℝ ) |
| 208 |
|
peano2re |
⊢ ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) ∈ ℝ → ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ∈ ℝ ) |
| 209 |
207 208
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ∈ ℝ ) |
| 210 |
203 209 195
|
ltdivmuld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ↔ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) |
| 211 |
22
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 212 |
|
flflp1 |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ↔ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) |
| 213 |
211 205 212
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ↔ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) |
| 214 |
199 209
|
remulcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ∈ ℝ ) |
| 215 |
214
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ∈ ℝ* ) |
| 216 |
|
elioomnf |
⊢ ( ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 217 |
215 216
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 218 |
203
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 219 |
217 218
|
bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) |
| 220 |
210 213 219
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ≤ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 221 |
196 202 220
|
3bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 222 |
221
|
rabbidva |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) } ) |
| 223 |
2
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 224 |
223
|
cnveqd |
⊢ ( 𝜑 → ◡ 𝐹 = ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 225 |
224
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 226 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 227 |
226
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) } |
| 228 |
225 227
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) } ) |
| 229 |
228
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) } ) |
| 230 |
222 229
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } = ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ) |
| 231 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ∈ dom vol ) |
| 232 |
1 5 231
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ∈ dom vol ) |
| 233 |
232
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → ( ◡ 𝐹 “ ( -∞ (,) ( ( 𝑣 / 3 ) · ( ( ⌊ ‘ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) + 1 ) ) ) ) ∈ dom vol ) |
| 234 |
230 233
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∈ dom vol ) |
| 235 |
46
|
sseld |
⊢ ( ℎ ∈ dom ∫1 → ( 𝑡 ∈ ran ℎ → 𝑡 ∈ ℝ ) ) |
| 236 |
235
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑡 ∈ ran ℎ → 𝑡 ∈ ℝ ) ) |
| 237 |
236
|
imdistani |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ) |
| 238 |
|
i1fmbf |
⊢ ( ℎ ∈ dom ∫1 → ℎ ∈ MblFn ) |
| 239 |
238 28
|
jca |
⊢ ( ℎ ∈ dom ∫1 → ( ℎ ∈ MblFn ∧ ℎ : ℝ ⟶ ℝ ) ) |
| 240 |
239
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( ℎ ∈ MblFn ∧ ℎ : ℝ ⟶ ℝ ) ) |
| 241 |
|
mbfimasn |
⊢ ( ( ℎ ∈ MblFn ∧ ℎ : ℝ ⟶ ℝ ∧ 𝑡 ∈ ℝ ) → ( ◡ ℎ “ { 𝑡 } ) ∈ dom vol ) |
| 242 |
241
|
3expa |
⊢ ( ( ( ℎ ∈ MblFn ∧ ℎ : ℝ ⟶ ℝ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ ℎ “ { 𝑡 } ) ∈ dom vol ) |
| 243 |
240 242
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ ℎ “ { 𝑡 } ) ∈ dom vol ) |
| 244 |
237 243
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → ( ◡ ℎ “ { 𝑡 } ) ∈ dom vol ) |
| 245 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∈ dom vol ∧ ( ◡ ℎ “ { 𝑡 } ) ∈ dom vol ) → ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∈ dom vol ) |
| 246 |
234 244 245
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∈ dom vol ) |
| 247 |
190 246
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 248 |
247
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∀ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 249 |
|
finiunmbl |
⊢ ( ( ran ℎ ∈ Fin ∧ ∀ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 250 |
42 248 249
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 251 |
173 250
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 252 |
|
unrab |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) } ) = { 𝑥 ∈ ℝ ∣ ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) } |
| 253 |
28
|
feqmptd |
⊢ ( ℎ ∈ dom ∫1 → ℎ = ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) ) |
| 254 |
253
|
cnveqd |
⊢ ( ℎ ∈ dom ∫1 → ◡ ℎ = ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) ) |
| 255 |
254
|
imaeq1d |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( -∞ (,) 0 ) ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ ( -∞ (,) 0 ) ) ) |
| 256 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) |
| 257 |
256
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) } |
| 258 |
255 257
|
eqtrdi |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( -∞ (,) 0 ) ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) } ) |
| 259 |
254
|
imaeq1d |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( 0 (,) +∞ ) ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ ( 0 (,) +∞ ) ) ) |
| 260 |
256
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ ( 0 (,) +∞ ) ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) } |
| 261 |
259 260
|
eqtrdi |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( 0 (,) +∞ ) ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) } ) |
| 262 |
258 261
|
uneq12d |
⊢ ( ℎ ∈ dom ∫1 → ( ( ◡ ℎ “ ( -∞ (,) 0 ) ) ∪ ( ◡ ℎ “ ( 0 (,) +∞ ) ) ) = ( { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) } ) ) |
| 263 |
28
|
ffvelcdmda |
⊢ ( ( ℎ ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ℎ ‘ 𝑥 ) ∈ ℝ ) |
| 264 |
|
0re |
⊢ 0 ∈ ℝ |
| 265 |
|
lttri2 |
⊢ ( ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ℎ ‘ 𝑥 ) ≠ 0 ↔ ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ) ) |
| 266 |
264 265
|
mpan2 |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ ℝ → ( ( ℎ ‘ 𝑥 ) ≠ 0 ↔ ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ) ) |
| 267 |
|
ibar |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ ℝ → ( ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ↔ ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 268 |
|
andi |
⊢ ( ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ) ↔ ( ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) < 0 ) ∨ ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( ℎ ‘ 𝑥 ) ) ) ) |
| 269 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 270 |
|
elioomnf |
⊢ ( 0 ∈ ℝ* → ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ↔ ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) < 0 ) ) ) |
| 271 |
|
elioopnf |
⊢ ( 0 ∈ ℝ* → ( ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ↔ ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( ℎ ‘ 𝑥 ) ) ) ) |
| 272 |
270 271
|
orbi12d |
⊢ ( 0 ∈ ℝ* → ( ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) ↔ ( ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) < 0 ) ∨ ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( ℎ ‘ 𝑥 ) ) ) ) ) |
| 273 |
269 272
|
ax-mp |
⊢ ( ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) ↔ ( ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ℎ ‘ 𝑥 ) < 0 ) ∨ ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( ℎ ‘ 𝑥 ) ) ) ) |
| 274 |
268 273
|
bitr4i |
⊢ ( ( ( ℎ ‘ 𝑥 ) ∈ ℝ ∧ ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ) ↔ ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) ) |
| 275 |
267 274
|
bitrdi |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ ℝ → ( ( ( ℎ ‘ 𝑥 ) < 0 ∨ 0 < ( ℎ ‘ 𝑥 ) ) ↔ ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) ) ) |
| 276 |
266 275
|
bitrd |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ ℝ → ( ( ℎ ‘ 𝑥 ) ≠ 0 ↔ ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) ) ) |
| 277 |
263 276
|
syl |
⊢ ( ( ℎ ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( ( ℎ ‘ 𝑥 ) ≠ 0 ↔ ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) ) ) |
| 278 |
277
|
rabbidva |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } = { 𝑥 ∈ ℝ ∣ ( ( ℎ ‘ 𝑥 ) ∈ ( -∞ (,) 0 ) ∨ ( ℎ ‘ 𝑥 ) ∈ ( 0 (,) +∞ ) ) } ) |
| 279 |
252 262 278
|
3eqtr4a |
⊢ ( ℎ ∈ dom ∫1 → ( ( ◡ ℎ “ ( -∞ (,) 0 ) ) ∪ ( ◡ ℎ “ ( 0 (,) +∞ ) ) ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) |
| 280 |
|
i1fima |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( -∞ (,) 0 ) ) ∈ dom vol ) |
| 281 |
|
i1fima |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( 0 (,) +∞ ) ) ∈ dom vol ) |
| 282 |
|
unmbl |
⊢ ( ( ( ◡ ℎ “ ( -∞ (,) 0 ) ) ∈ dom vol ∧ ( ◡ ℎ “ ( 0 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ℎ “ ( -∞ (,) 0 ) ) ∪ ( ◡ ℎ “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 283 |
280 281 282
|
syl2anc |
⊢ ( ℎ ∈ dom ∫1 → ( ( ◡ ℎ “ ( -∞ (,) 0 ) ) ∪ ( ◡ ℎ “ ( 0 (,) +∞ ) ) ) ∈ dom vol ) |
| 284 |
279 283
|
eqeltrrd |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ∈ dom vol ) |
| 285 |
284
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ∈ dom vol ) |
| 286 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ∧ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ∈ dom vol ) → ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∈ dom vol ) |
| 287 |
251 285 286
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∈ dom vol ) |
| 288 |
287
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∈ dom vol ) |
| 289 |
24
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℂ ) |
| 290 |
289
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℂ ) |
| 291 |
|
1cnd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℂ ) |
| 292 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
| 293 |
14
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 294 |
20
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ≠ 0 ) |
| 295 |
292 293 294
|
redivcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 296 |
295
|
recnd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℂ ) |
| 297 |
290 291 296
|
subadd2d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) = ( 𝑡 / ( 𝑣 / 3 ) ) ↔ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) ) |
| 298 |
|
eqcom |
⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) = ( 𝑡 / ( 𝑣 / 3 ) ) ↔ ( 𝑡 / ( 𝑣 / 3 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ) |
| 299 |
|
recn |
⊢ ( 𝑡 ∈ ℝ → 𝑡 ∈ ℂ ) |
| 300 |
299
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
| 301 |
26
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ∈ ℂ ) |
| 302 |
301
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ∈ ℂ ) |
| 303 |
14
|
recnd |
⊢ ( 𝑣 ∈ ℝ+ → ( 𝑣 / 3 ) ∈ ℂ ) |
| 304 |
303
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℂ ) |
| 305 |
300 302 304 294
|
divmul3d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ↔ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 306 |
298 305
|
bitrid |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) = ( 𝑡 / ( 𝑣 / 3 ) ) ↔ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 307 |
297 306
|
bitr3d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ↔ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 308 |
307
|
rabbidva |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } = { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) |
| 309 |
|
imaundi |
⊢ ( ◡ 𝐹 “ ( { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) = ( ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 310 |
224
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ◡ 𝐹 = ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 311 |
|
zre |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 312 |
311
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 313 |
14
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 314 |
312 313
|
remulcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 315 |
314
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ* ) |
| 316 |
|
peano2z |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℤ ) |
| 317 |
316
|
zred |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ) |
| 318 |
317
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ) |
| 319 |
313 318
|
remulcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ ) |
| 320 |
319
|
rexrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ* ) |
| 321 |
|
zcn |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℂ ) |
| 322 |
321
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℂ ) |
| 323 |
303
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( 𝑣 / 3 ) ∈ ℂ ) |
| 324 |
322 323
|
mulcomd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) = ( ( 𝑣 / 3 ) · ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) ) |
| 325 |
69
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 326 |
311
|
ltp1d |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) |
| 327 |
326
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) |
| 328 |
312 318 325 327
|
ltmul2dd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑣 / 3 ) · ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) |
| 329 |
324 328
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) |
| 330 |
|
snunioo |
⊢ ( ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ* ∧ ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ* ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) → ( { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) = ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 331 |
315 320 329 330
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) = ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 332 |
310 331
|
imaeq12d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ◡ 𝐹 “ ( { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 333 |
309 332
|
eqtr3id |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 334 |
226
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) } |
| 335 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 336 |
335
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 337 |
336
|
3biant1d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 338 |
337
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 339 |
311
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 340 |
336
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 341 |
69
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 342 |
339 340 341
|
lemuldivd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 343 |
317
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ) |
| 344 |
340 343 341
|
ltdivmuld |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ↔ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 345 |
344
|
bicomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) |
| 346 |
342 345
|
anbi12d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 347 |
338 346
|
bitr3d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 348 |
|
elico2 |
⊢ ( ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ ∧ ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 349 |
314 320 348
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 350 |
349
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ∧ ( 𝐹 ‘ 𝑥 ) < ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) |
| 351 |
|
eqcom |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) = ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ) |
| 352 |
22
|
adantlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 353 |
|
flbi |
⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) = ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 354 |
352 353
|
sylan |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) = ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 355 |
351 354
|
bitrid |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) < ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) |
| 356 |
347 350 355
|
3bitr4d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) ) |
| 357 |
356
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ↔ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) ) |
| 358 |
357
|
rabbidva |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) } = { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } ) |
| 359 |
334 358
|
eqtrid |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) [,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } ) |
| 360 |
333 359
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) = { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } ) |
| 361 |
1
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → 𝐹 ∈ MblFn ) |
| 362 |
5
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 363 |
|
mbfimasn |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ∧ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ ) → ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ) |
| 364 |
361 362 314 363
|
syl3anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ) |
| 365 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ∈ dom vol ) |
| 366 |
1 5 365
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ∈ dom vol ) |
| 367 |
366
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ∈ dom vol ) |
| 368 |
|
unmbl |
⊢ ( ( ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) ∈ dom vol ) |
| 369 |
364 367 368
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ( ( ◡ 𝐹 “ { ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) · ( 𝑣 / 3 ) ) (,) ( ( 𝑣 / 3 ) · ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ) ) ) ∈ dom vol ) |
| 370 |
360 369
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } ∈ dom vol ) |
| 371 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 372 |
352
|
flcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℤ ) |
| 373 |
372
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℤ ) |
| 374 |
371 373
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) |
| 375 |
374
|
stoic1a |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 376 |
375
|
an32s |
⊢ ( ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) ∧ 𝑥 ∈ ℝ ) → ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 377 |
376
|
ralrimiva |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → ∀ 𝑥 ∈ ℝ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 378 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } = ∅ ↔ ∀ 𝑥 ∈ ℝ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 379 |
377 378
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } = ∅ ) |
| 380 |
|
0mbl |
⊢ ∅ ∈ dom vol |
| 381 |
379 380
|
eqeltrdi |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ ¬ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℤ ) → { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } ∈ dom vol ) |
| 382 |
370 381
|
pm2.61dan |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → { 𝑥 ∈ ℝ ∣ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) } ∈ dom vol ) |
| 383 |
308 382
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ∈ dom vol ) |
| 384 |
|
inmbl |
⊢ ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∈ dom vol ∧ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ∈ dom vol ) → ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ) |
| 385 |
288 383 384
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ) |
| 386 |
|
rabiun |
⊢ { 𝑥 ∈ ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } |
| 387 |
|
rabeq |
⊢ ( ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) = ℝ → { 𝑥 ∈ ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 388 |
169 387
|
syl |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ∪ 𝑡 ∈ ran ℎ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 389 |
386 388
|
eqtr3id |
⊢ ( ℎ ∈ dom ∫1 → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 390 |
389
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ) |
| 391 |
177
|
notbid |
⊢ ( ( ℎ ∈ dom ∫1 ∧ 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ) → ( ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ↔ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 ) ) |
| 392 |
391
|
rabbidva |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 393 |
|
inrab2 |
⊢ ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) = { 𝑥 ∈ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } |
| 394 |
|
rabeq |
⊢ ( ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) = ( ◡ ℎ “ { 𝑡 } ) → { 𝑥 ∈ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 395 |
185 394
|
syl |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ( ℝ ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 396 |
393 395
|
eqtrid |
⊢ ( ℎ ∈ dom ∫1 → ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) = { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 397 |
392 396
|
eqtr4d |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ) |
| 398 |
397
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } = ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ) |
| 399 |
|
imaundi |
⊢ ( ◡ 𝐹 “ ( { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) = ( ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) |
| 400 |
14 20
|
jca |
⊢ ( 𝑣 ∈ ℝ+ → ( ( 𝑣 / 3 ) ∈ ℝ ∧ ( 𝑣 / 3 ) ≠ 0 ) ) |
| 401 |
|
redivcl |
⊢ ( ( 𝑡 ∈ ℝ ∧ ( 𝑣 / 3 ) ∈ ℝ ∧ ( 𝑣 / 3 ) ≠ 0 ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 402 |
401
|
3expb |
⊢ ( ( 𝑡 ∈ ℝ ∧ ( ( 𝑣 / 3 ) ∈ ℝ ∧ ( 𝑣 / 3 ) ≠ 0 ) ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 403 |
400 402
|
sylan2 |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ+ ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 404 |
403
|
ancoms |
⊢ ( ( 𝑣 ∈ ℝ+ ∧ 𝑡 ∈ ℝ ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 405 |
404
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( 𝑡 / ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 406 |
405 204
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 407 |
|
peano2re |
⊢ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ) |
| 408 |
|
reflcl |
⊢ ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ → ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ ) |
| 409 |
406 407 408
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ ) |
| 410 |
14
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ ) |
| 411 |
409 410
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 412 |
411
|
rexrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ* ) |
| 413 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 414 |
413
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → +∞ ∈ ℝ* ) |
| 415 |
|
ltpnf |
⊢ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) < +∞ ) |
| 416 |
411 415
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) < +∞ ) |
| 417 |
|
snunioo |
⊢ ( ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) < +∞ ) → ( { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) = ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) |
| 418 |
412 414 416 417
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) = ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) |
| 419 |
418
|
imaeq2d |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐹 “ ( { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ∪ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) = ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) ) |
| 420 |
399 419
|
eqtr3id |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) = ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) ) |
| 421 |
224
|
imaeq1d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) ) |
| 422 |
226
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( 𝐹 ‘ 𝑥 ) ) “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) } |
| 423 |
421 422
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) } ) |
| 424 |
423
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ) = { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) } ) |
| 425 |
406 407
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ) |
| 426 |
425
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ) |
| 427 |
|
flflp1 |
⊢ ( ( ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ∈ ℝ ) → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) < ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) + 1 ) ) ) |
| 428 |
426 352 427
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) < ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) + 1 ) ) ) |
| 429 |
411
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 430 |
|
elicopnf |
⊢ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 431 |
429 430
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 432 |
336
|
biantrurd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 433 |
409
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ∈ ℝ ) |
| 434 |
69
|
ad3antlr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑣 / 3 ) ∈ ℝ+ ) |
| 435 |
433 336 434
|
lemuldivd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 436 |
431 432 435
|
3bitr2d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ↔ ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) |
| 437 |
406
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) ∈ ℝ ) |
| 438 |
352 23
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ∈ ℝ ) |
| 439 |
|
1red |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) |
| 440 |
437 438 439
|
ltadd1d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) < ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ↔ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) < ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) + 1 ) ) ) |
| 441 |
428 436 440
|
3bitr4d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ↔ ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) < ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ) ) |
| 442 |
295 439 438
|
ltaddsubd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) < ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) ↔ ( 𝑡 / ( 𝑣 / 3 ) ) < ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ) ) |
| 443 |
441 442
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ↔ ( 𝑡 / ( 𝑣 / 3 ) ) < ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ) ) |
| 444 |
438 25
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ∈ ℝ ) |
| 445 |
292 444 434
|
ltdivmul2d |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑡 / ( 𝑣 / 3 ) ) < ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) ↔ 𝑡 < ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ) ) |
| 446 |
444 293
|
remulcld |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ∈ ℝ ) |
| 447 |
292 446
|
ltnled |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑡 < ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ↔ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 ) ) |
| 448 |
443 445 447
|
3bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) ↔ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 ) ) |
| 449 |
448
|
rabbidva |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → { 𝑥 ∈ ℝ ∣ ( 𝐹 ‘ 𝑥 ) ∈ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) [,) +∞ ) } = { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 450 |
420 424 449
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) = { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ) |
| 451 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → 𝐹 ∈ MblFn ) |
| 452 |
|
mbfimasn |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ∧ ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) ∈ ℝ ) → ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ) |
| 453 |
451 335 411 452
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ) |
| 454 |
|
mbfima |
⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ∈ dom vol ) |
| 455 |
1 5 454
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ∈ dom vol ) |
| 456 |
455
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ∈ dom vol ) |
| 457 |
|
unmbl |
⊢ ( ( ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) ∈ dom vol ) |
| 458 |
453 456 457
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ◡ 𝐹 “ { ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) } ) ∪ ( ◡ 𝐹 “ ( ( ( ⌊ ‘ ( ( ( 𝑡 / ( 𝑣 / 3 ) ) + 1 ) + 1 ) ) · ( 𝑣 / 3 ) ) (,) +∞ ) ) ) ∈ dom vol ) |
| 459 |
450 458
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∈ dom vol ) |
| 460 |
237 459
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∈ dom vol ) |
| 461 |
|
inmbl |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∈ dom vol ∧ ( ◡ ℎ “ { 𝑡 } ) ∈ dom vol ) → ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∈ dom vol ) |
| 462 |
460 244 461
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ 𝑡 } ∩ ( ◡ ℎ “ { 𝑡 } ) ) ∈ dom vol ) |
| 463 |
398 462
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ran ℎ ) → { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 464 |
463
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∀ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 465 |
|
finiunmbl |
⊢ ( ( ran ℎ ∈ Fin ∧ ∀ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 466 |
42 464 465
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ∪ 𝑡 ∈ ran ℎ { 𝑥 ∈ ( ◡ ℎ “ { 𝑡 } ) ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 467 |
390 466
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 468 |
254
|
imaeq1d |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 0 } ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ { 0 } ) ) |
| 469 |
256
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ { 0 } ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 0 } } |
| 470 |
141
|
elsn |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ { 0 } ↔ ( ℎ ‘ 𝑥 ) = 0 ) |
| 471 |
470
|
rabbii |
⊢ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 0 } } = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } |
| 472 |
469 471
|
eqtri |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ { 0 } ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } |
| 473 |
468 472
|
eqtrdi |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 0 } ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) |
| 474 |
|
i1fima |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 0 } ) ∈ dom vol ) |
| 475 |
473 474
|
eqeltrrd |
⊢ ( ℎ ∈ dom ∫1 → { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ∈ dom vol ) |
| 476 |
475
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ∈ dom vol ) |
| 477 |
|
unmbl |
⊢ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∈ dom vol ∧ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ∈ dom vol ) → ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∈ dom vol ) |
| 478 |
467 476 477
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∈ dom vol ) |
| 479 |
478
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∈ dom vol ) |
| 480 |
254
|
imaeq1d |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 𝑡 } ) = ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ { 𝑡 } ) ) |
| 481 |
256
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ { 𝑡 } ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 𝑡 } } |
| 482 |
141
|
elsn |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ { 𝑡 } ↔ ( ℎ ‘ 𝑥 ) = 𝑡 ) |
| 483 |
|
eqcom |
⊢ ( ( ℎ ‘ 𝑥 ) = 𝑡 ↔ 𝑡 = ( ℎ ‘ 𝑥 ) ) |
| 484 |
482 483
|
bitri |
⊢ ( ( ℎ ‘ 𝑥 ) ∈ { 𝑡 } ↔ 𝑡 = ( ℎ ‘ 𝑥 ) ) |
| 485 |
484
|
rabbii |
⊢ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 𝑡 } } = { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } |
| 486 |
481 485
|
eqtri |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ ( ℎ ‘ 𝑥 ) ) “ { 𝑡 } ) = { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } |
| 487 |
480 486
|
eqtrdi |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 𝑡 } ) = { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) |
| 488 |
487
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ◡ ℎ “ { 𝑡 } ) = { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) |
| 489 |
488 243
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ∈ dom vol ) |
| 490 |
|
inmbl |
⊢ ( ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∈ dom vol ∧ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ∈ dom vol ) → ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ∈ dom vol ) |
| 491 |
479 489 490
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ∈ dom vol ) |
| 492 |
|
unmbl |
⊢ ( ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∈ dom vol ∧ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ∈ dom vol ) → ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ) ∈ dom vol ) |
| 493 |
385 491 492
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ℝ ) → ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ) ∈ dom vol ) |
| 494 |
160 493
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( ( ( { 𝑥 ∈ ℝ ∣ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ≠ 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) } ) ∪ ( ( { 𝑥 ∈ ℝ ∣ ¬ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) } ∪ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) = 0 } ) ∩ { 𝑥 ∈ ℝ ∣ 𝑡 = ( ℎ ‘ 𝑥 ) } ) ) ∈ dom vol ) |
| 495 |
155 494
|
eqeltrid |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∈ dom vol ) |
| 496 |
|
mblvol |
⊢ ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) = ( vol* ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) ) |
| 497 |
495 496
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) = ( vol* ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) ) |
| 498 |
|
eldifsn |
⊢ ( 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ↔ ( 𝑡 ∈ ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∧ 𝑡 ≠ 0 ) ) |
| 499 |
158
|
anim1d |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( ( 𝑡 ∈ ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∧ 𝑡 ≠ 0 ) → ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) ) |
| 500 |
498 499
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) → ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) ) |
| 501 |
500
|
imdistani |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) ) |
| 502 |
129
|
a1i |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) = { 𝑥 ∈ ℝ ∣ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } } ) |
| 503 |
468 469
|
eqtrdi |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ { 0 } ) = { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 0 } } ) |
| 504 |
502 503
|
ineq12d |
⊢ ( ℎ ∈ dom ∫1 → ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∩ ( ◡ ℎ “ { 0 } ) ) = ( { 𝑥 ∈ ℝ ∣ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 0 } } ) ) |
| 505 |
|
inrab |
⊢ ( { 𝑥 ∈ ℝ ∣ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } } ∩ { 𝑥 ∈ ℝ ∣ ( ℎ ‘ 𝑥 ) ∈ { 0 } } ) = { 𝑥 ∈ ℝ ∣ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) } |
| 506 |
504 505
|
eqtrdi |
⊢ ( ℎ ∈ dom ∫1 → ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∩ ( ◡ ℎ “ { 0 } ) ) = { 𝑥 ∈ ℝ ∣ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) } ) |
| 507 |
506
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∩ ( ◡ ℎ “ { 0 } ) ) = { 𝑥 ∈ ℝ ∣ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) } ) |
| 508 |
145
|
biimpri |
⊢ ( ( ℎ ‘ 𝑥 ) = 0 → ¬ ( ℎ ‘ 𝑥 ) ≠ 0 ) |
| 509 |
508
|
intnand |
⊢ ( ( ℎ ‘ 𝑥 ) = 0 → ¬ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) ) |
| 510 |
509
|
iffalsed |
⊢ ( ( ℎ ‘ 𝑥 ) = 0 → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = ( ℎ ‘ 𝑥 ) ) |
| 511 |
|
eqtr |
⊢ ( ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) = 0 ) → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = 0 ) |
| 512 |
510 511
|
mpancom |
⊢ ( ( ℎ ‘ 𝑥 ) = 0 → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = 0 ) |
| 513 |
512
|
adantl |
⊢ ( ( ( 𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ ) ∧ ( ℎ ‘ 𝑥 ) = 0 ) → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) = 0 ) |
| 514 |
|
simpll |
⊢ ( ( ( 𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ ) ∧ ( ℎ ‘ 𝑥 ) = 0 ) → 𝑡 ≠ 0 ) |
| 515 |
514
|
necomd |
⊢ ( ( ( 𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ ) ∧ ( ℎ ‘ 𝑥 ) = 0 ) → 0 ≠ 𝑡 ) |
| 516 |
513 515
|
eqnetrd |
⊢ ( ( ( 𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ ) ∧ ( ℎ ‘ 𝑥 ) = 0 ) → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ≠ 𝑡 ) |
| 517 |
516
|
ex |
⊢ ( ( 𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ ) → ( ( ℎ ‘ 𝑥 ) = 0 → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ≠ 𝑡 ) ) |
| 518 |
|
orcom |
⊢ ( ( ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∨ ¬ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ↔ ( ¬ ( ℎ ‘ 𝑥 ) ∈ { 0 } ∨ ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ) ) |
| 519 |
|
ianor |
⊢ ( ¬ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ↔ ( ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∨ ¬ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ) |
| 520 |
|
imor |
⊢ ( ( ( ℎ ‘ 𝑥 ) ∈ { 0 } → ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ) ↔ ( ¬ ( ℎ ‘ 𝑥 ) ∈ { 0 } ∨ ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ) ) |
| 521 |
518 519 520
|
3bitr4i |
⊢ ( ¬ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ↔ ( ( ℎ ‘ 𝑥 ) ∈ { 0 } → ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ) ) |
| 522 |
143
|
necon3bbii |
⊢ ( ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ↔ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ≠ 𝑡 ) |
| 523 |
470 522
|
imbi12i |
⊢ ( ( ( ℎ ‘ 𝑥 ) ∈ { 0 } → ¬ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ) ↔ ( ( ℎ ‘ 𝑥 ) = 0 → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ≠ 𝑡 ) ) |
| 524 |
521 523
|
bitri |
⊢ ( ¬ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ↔ ( ( ℎ ‘ 𝑥 ) = 0 → if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ≠ 𝑡 ) ) |
| 525 |
517 524
|
sylibr |
⊢ ( ( 𝑡 ≠ 0 ∧ 𝑥 ∈ ℝ ) → ¬ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ) |
| 526 |
525
|
ralrimiva |
⊢ ( 𝑡 ≠ 0 → ∀ 𝑥 ∈ ℝ ¬ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ) |
| 527 |
|
rabeq0 |
⊢ ( { 𝑥 ∈ ℝ ∣ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) } = ∅ ↔ ∀ 𝑥 ∈ ℝ ¬ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) ) |
| 528 |
526 527
|
sylibr |
⊢ ( 𝑡 ≠ 0 → { 𝑥 ∈ ℝ ∣ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) } = ∅ ) |
| 529 |
528
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → { 𝑥 ∈ ℝ ∣ ( if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ∈ { 𝑡 } ∧ ( ℎ ‘ 𝑥 ) ∈ { 0 } ) } = ∅ ) |
| 530 |
507 529
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∩ ( ◡ ℎ “ { 0 } ) ) = ∅ ) |
| 531 |
|
imassrn |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ran ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) |
| 532 |
|
dfdm4 |
⊢ dom ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) = ran ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) |
| 533 |
142 128
|
dmmpti |
⊢ dom ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) = ℝ |
| 534 |
532 533
|
eqtr3i |
⊢ ran ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) = ℝ |
| 535 |
531 534
|
sseqtri |
⊢ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ℝ |
| 536 |
|
reldisj |
⊢ ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ℝ → ( ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∩ ( ◡ ℎ “ { 0 } ) ) = ∅ ↔ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) ) |
| 537 |
535 536
|
ax-mp |
⊢ ( ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ∩ ( ◡ ℎ “ { 0 } ) ) = ∅ ↔ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 538 |
530 537
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 539 |
|
ffun |
⊢ ( ℎ : ℝ ⟶ ℝ → Fun ℎ ) |
| 540 |
|
difpreima |
⊢ ( Fun ℎ → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) = ( ( ◡ ℎ “ ran ℎ ) ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 541 |
539 540
|
syl |
⊢ ( ℎ : ℝ ⟶ ℝ → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) = ( ( ◡ ℎ “ ran ℎ ) ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 542 |
|
fdm |
⊢ ( ℎ : ℝ ⟶ ℝ → dom ℎ = ℝ ) |
| 543 |
162 542
|
eqtrid |
⊢ ( ℎ : ℝ ⟶ ℝ → ( ◡ ℎ “ ran ℎ ) = ℝ ) |
| 544 |
543
|
difeq1d |
⊢ ( ℎ : ℝ ⟶ ℝ → ( ( ◡ ℎ “ ran ℎ ) ∖ ( ◡ ℎ “ { 0 } ) ) = ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 545 |
541 544
|
eqtrd |
⊢ ( ℎ : ℝ ⟶ ℝ → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) = ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 546 |
28 545
|
syl |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) = ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 547 |
546
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) = ( ℝ ∖ ( ◡ ℎ “ { 0 } ) ) ) |
| 548 |
538 547
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) |
| 549 |
|
imassrn |
⊢ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ⊆ ran ◡ ℎ |
| 550 |
549 182
|
sseqtrid |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ⊆ ℝ ) |
| 551 |
550
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ⊆ ℝ ) |
| 552 |
|
i1fima |
⊢ ( ℎ ∈ dom ∫1 → ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ∈ dom vol ) |
| 553 |
|
mblvol |
⊢ ( ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ∈ dom vol → ( vol ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ) |
| 554 |
552 553
|
syl |
⊢ ( ℎ ∈ dom ∫1 → ( vol ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ) |
| 555 |
|
neldifsn |
⊢ ¬ 0 ∈ ( ran ℎ ∖ { 0 } ) |
| 556 |
|
i1fima2 |
⊢ ( ( ℎ ∈ dom ∫1 ∧ ¬ 0 ∈ ( ran ℎ ∖ { 0 } ) ) → ( vol ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 557 |
555 556
|
mpan2 |
⊢ ( ℎ ∈ dom ∫1 → ( vol ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 558 |
554 557
|
eqeltrrd |
⊢ ( ℎ ∈ dom ∫1 → ( vol* ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 559 |
558
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( vol* ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 560 |
|
ovolsscl |
⊢ ( ( ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ⊆ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ∧ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ ℎ “ ( ran ℎ ∖ { 0 } ) ) ) ∈ ℝ ) → ( vol* ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) ∈ ℝ ) |
| 561 |
548 551 559 560
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ ( 𝑡 ∈ ℝ ∧ 𝑡 ≠ 0 ) ) → ( vol* ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) ∈ ℝ ) |
| 562 |
501 561
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) ∈ ℝ ) |
| 563 |
497 562
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) ∧ 𝑡 ∈ ( ran ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) “ { 𝑡 } ) ) ∈ ℝ ) |
| 564 |
32 127 495 563
|
i1fd |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ dom ∫1 ) ∧ 𝑣 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ↦ if ( ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) ≤ ( ℎ ‘ 𝑥 ) ∧ ( ℎ ‘ 𝑥 ) ≠ 0 ) , ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) / ( 𝑣 / 3 ) ) ) − 1 ) · ( 𝑣 / 3 ) ) , ( ℎ ‘ 𝑥 ) ) ) ∈ dom ∫1 ) |