Metamath Proof Explorer


Theorem i1fmulc

Description: A nonnegative constant times a simple function gives another simple function. (Contributed by Mario Carneiro, 25-Jun-2014)

Ref Expression
Hypotheses i1fmulc.2
|- ( ph -> F e. dom S.1 )
i1fmulc.3
|- ( ph -> A e. RR )
Assertion i1fmulc
|- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 )

Proof

Step Hyp Ref Expression
1 i1fmulc.2
 |-  ( ph -> F e. dom S.1 )
2 i1fmulc.3
 |-  ( ph -> A e. RR )
3 reex
 |-  RR e. _V
4 3 a1i
 |-  ( ( ph /\ A = 0 ) -> RR e. _V )
5 i1ff
 |-  ( F e. dom S.1 -> F : RR --> RR )
6 1 5 syl
 |-  ( ph -> F : RR --> RR )
7 6 adantr
 |-  ( ( ph /\ A = 0 ) -> F : RR --> RR )
8 2 adantr
 |-  ( ( ph /\ A = 0 ) -> A e. RR )
9 0red
 |-  ( ( ph /\ A = 0 ) -> 0 e. RR )
10 simplr
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 )
11 10 oveq1d
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) )
12 mul02lem2
 |-  ( x e. RR -> ( 0 x. x ) = 0 )
13 12 adantl
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 )
14 11 13 eqtrd
 |-  ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 )
15 4 7 8 9 14 caofid2
 |-  ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) )
16 i1f0
 |-  ( RR X. { 0 } ) e. dom S.1
17 15 16 eqeltrdi
 |-  ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 )
18 remulcl
 |-  ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR )
19 18 adantl
 |-  ( ( ph /\ ( x e. RR /\ y e. RR ) ) -> ( x x. y ) e. RR )
20 fconst6g
 |-  ( A e. RR -> ( RR X. { A } ) : RR --> RR )
21 2 20 syl
 |-  ( ph -> ( RR X. { A } ) : RR --> RR )
22 3 a1i
 |-  ( ph -> RR e. _V )
23 inidm
 |-  ( RR i^i RR ) = RR
24 19 21 6 22 22 23 off
 |-  ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> RR )
25 24 adantr
 |-  ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR )
26 i1frn
 |-  ( F e. dom S.1 -> ran F e. Fin )
27 1 26 syl
 |-  ( ph -> ran F e. Fin )
28 ovex
 |-  ( A x. y ) e. _V
29 eqid
 |-  ( y e. ran F |-> ( A x. y ) ) = ( y e. ran F |-> ( A x. y ) )
30 28 29 fnmpti
 |-  ( y e. ran F |-> ( A x. y ) ) Fn ran F
31 dffn4
 |-  ( ( y e. ran F |-> ( A x. y ) ) Fn ran F <-> ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) )
32 30 31 mpbi
 |-  ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) )
33 fofi
 |-  ( ( ran F e. Fin /\ ( y e. ran F |-> ( A x. y ) ) : ran F -onto-> ran ( y e. ran F |-> ( A x. y ) ) ) -> ran ( y e. ran F |-> ( A x. y ) ) e. Fin )
34 27 32 33 sylancl
 |-  ( ph -> ran ( y e. ran F |-> ( A x. y ) ) e. Fin )
35 id
 |-  ( w e. ran F -> w e. ran F )
36 elsni
 |-  ( x e. { A } -> x = A )
37 36 oveq1d
 |-  ( x e. { A } -> ( x x. w ) = ( A x. w ) )
38 oveq2
 |-  ( y = w -> ( A x. y ) = ( A x. w ) )
39 38 rspceeqv
 |-  ( ( w e. ran F /\ ( x x. w ) = ( A x. w ) ) -> E. y e. ran F ( x x. w ) = ( A x. y ) )
40 35 37 39 syl2anr
 |-  ( ( x e. { A } /\ w e. ran F ) -> E. y e. ran F ( x x. w ) = ( A x. y ) )
41 ovex
 |-  ( x x. w ) e. _V
42 eqeq1
 |-  ( z = ( x x. w ) -> ( z = ( A x. y ) <-> ( x x. w ) = ( A x. y ) ) )
43 42 rexbidv
 |-  ( z = ( x x. w ) -> ( E. y e. ran F z = ( A x. y ) <-> E. y e. ran F ( x x. w ) = ( A x. y ) ) )
44 41 43 elab
 |-  ( ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } <-> E. y e. ran F ( x x. w ) = ( A x. y ) )
45 40 44 sylibr
 |-  ( ( x e. { A } /\ w e. ran F ) -> ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } )
46 45 adantl
 |-  ( ( ph /\ ( x e. { A } /\ w e. ran F ) ) -> ( x x. w ) e. { z | E. y e. ran F z = ( A x. y ) } )
47 fconstg
 |-  ( A e. RR -> ( RR X. { A } ) : RR --> { A } )
48 2 47 syl
 |-  ( ph -> ( RR X. { A } ) : RR --> { A } )
49 6 ffnd
 |-  ( ph -> F Fn RR )
50 dffn3
 |-  ( F Fn RR <-> F : RR --> ran F )
51 49 50 sylib
 |-  ( ph -> F : RR --> ran F )
52 46 48 51 22 22 23 off
 |-  ( ph -> ( ( RR X. { A } ) oF x. F ) : RR --> { z | E. y e. ran F z = ( A x. y ) } )
53 52 frnd
 |-  ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ { z | E. y e. ran F z = ( A x. y ) } )
54 29 rnmpt
 |-  ran ( y e. ran F |-> ( A x. y ) ) = { z | E. y e. ran F z = ( A x. y ) }
55 53 54 sseqtrrdi
 |-  ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ ran ( y e. ran F |-> ( A x. y ) ) )
56 34 55 ssfid
 |-  ( ph -> ran ( ( RR X. { A } ) oF x. F ) e. Fin )
57 56 adantr
 |-  ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin )
58 24 frnd
 |-  ( ph -> ran ( ( RR X. { A } ) oF x. F ) C_ RR )
59 58 ssdifssd
 |-  ( ph -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR )
60 59 adantr
 |-  ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR )
61 60 sselda
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y e. RR )
62 1 2 i1fmulclem
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) = ( `' F " { ( y / A ) } ) )
63 61 62 syldan
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) = ( `' F " { ( y / A ) } ) )
64 i1fima
 |-  ( F e. dom S.1 -> ( `' F " { ( y / A ) } ) e. dom vol )
65 1 64 syl
 |-  ( ph -> ( `' F " { ( y / A ) } ) e. dom vol )
66 65 ad2antrr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' F " { ( y / A ) } ) e. dom vol )
67 63 66 eqeltrd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) e. dom vol )
68 63 fveq2d
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) ) = ( vol ` ( `' F " { ( y / A ) } ) ) )
69 1 ad2antrr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 )
70 2 ad2antrr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR )
71 simplr
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 )
72 61 70 71 redivcld
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) e. RR )
73 61 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y e. CC )
74 70 recnd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC )
75 eldifsni
 |-  ( y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> y =/= 0 )
76 75 adantl
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> y =/= 0 )
77 73 74 76 71 divne0d
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) =/= 0 )
78 eldifsn
 |-  ( ( y / A ) e. ( RR \ { 0 } ) <-> ( ( y / A ) e. RR /\ ( y / A ) =/= 0 ) )
79 72 77 78 sylanbrc
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( y / A ) e. ( RR \ { 0 } ) )
80 i1fima2sn
 |-  ( ( F e. dom S.1 /\ ( y / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( y / A ) } ) ) e. RR )
81 69 79 80 syl2anc
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( y / A ) } ) ) e. RR )
82 68 81 eqeltrd
 |-  ( ( ( ph /\ A =/= 0 ) /\ y e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { y } ) ) e. RR )
83 25 57 67 82 i1fd
 |-  ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 )
84 17 83 pm2.61dane
 |-  ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 )