| Step |
Hyp |
Ref |
Expression |
| 1 |
|
i1fmulc.2 |
|- ( ph -> F e. dom S.1 ) |
| 2 |
|
i1fmulc.3 |
|- ( ph -> A e. RR ) |
| 3 |
|
itg10 |
|- ( S.1 ` ( RR X. { 0 } ) ) = 0 |
| 4 |
|
reex |
|- RR e. _V |
| 5 |
4
|
a1i |
|- ( ( ph /\ A = 0 ) -> RR e. _V ) |
| 6 |
|
i1ff |
|- ( F e. dom S.1 -> F : RR --> RR ) |
| 7 |
1 6
|
syl |
|- ( ph -> F : RR --> RR ) |
| 8 |
7
|
adantr |
|- ( ( ph /\ A = 0 ) -> F : RR --> RR ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ A = 0 ) -> A e. RR ) |
| 10 |
|
0red |
|- ( ( ph /\ A = 0 ) -> 0 e. RR ) |
| 11 |
|
simplr |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> A = 0 ) |
| 12 |
11
|
oveq1d |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = ( 0 x. x ) ) |
| 13 |
|
mul02lem2 |
|- ( x e. RR -> ( 0 x. x ) = 0 ) |
| 14 |
13
|
adantl |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( 0 x. x ) = 0 ) |
| 15 |
12 14
|
eqtrd |
|- ( ( ( ph /\ A = 0 ) /\ x e. RR ) -> ( A x. x ) = 0 ) |
| 16 |
5 8 9 10 15
|
caofid2 |
|- ( ( ph /\ A = 0 ) -> ( ( RR X. { A } ) oF x. F ) = ( RR X. { 0 } ) ) |
| 17 |
16
|
fveq2d |
|- ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( S.1 ` ( RR X. { 0 } ) ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ A = 0 ) -> A = 0 ) |
| 19 |
18
|
oveq1d |
|- ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = ( 0 x. ( S.1 ` F ) ) ) |
| 20 |
|
itg1cl |
|- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
| 21 |
1 20
|
syl |
|- ( ph -> ( S.1 ` F ) e. RR ) |
| 22 |
21
|
recnd |
|- ( ph -> ( S.1 ` F ) e. CC ) |
| 23 |
22
|
mul02d |
|- ( ph -> ( 0 x. ( S.1 ` F ) ) = 0 ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ A = 0 ) -> ( 0 x. ( S.1 ` F ) ) = 0 ) |
| 25 |
19 24
|
eqtrd |
|- ( ( ph /\ A = 0 ) -> ( A x. ( S.1 ` F ) ) = 0 ) |
| 26 |
3 17 25
|
3eqtr4a |
|- ( ( ph /\ A = 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
| 27 |
1 2
|
i1fmulc |
|- ( ph -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) e. dom S.1 ) |
| 29 |
|
i1ff |
|- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) : RR --> RR ) |
| 31 |
30
|
frnd |
|- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) C_ RR ) |
| 32 |
31
|
ssdifssd |
|- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR ) |
| 33 |
32
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. RR ) |
| 34 |
33
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m e. CC ) |
| 35 |
2
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> A e. RR ) |
| 36 |
35
|
recnd |
|- ( ( ph /\ A =/= 0 ) -> A e. CC ) |
| 37 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 38 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
| 39 |
34 37 38
|
divcan2d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( A x. ( m / A ) ) = m ) |
| 40 |
1 2
|
i1fmulclem |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. RR ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) ) |
| 41 |
33 40
|
syldan |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) = ( `' F " { ( m / A ) } ) ) |
| 42 |
41
|
fveq2d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) ) |
| 43 |
42
|
eqcomd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) = ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) |
| 44 |
39 43
|
oveq12d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
| 45 |
2
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. RR ) |
| 46 |
33 45 38
|
redivcld |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. RR ) |
| 47 |
46
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. CC ) |
| 48 |
1
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> F e. dom S.1 ) |
| 49 |
45
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 50 |
|
eldifsni |
|- ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> m =/= 0 ) |
| 51 |
50
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> m =/= 0 ) |
| 52 |
34 49 51 38
|
divne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) =/= 0 ) |
| 53 |
|
eldifsn |
|- ( ( m / A ) e. ( RR \ { 0 } ) <-> ( ( m / A ) e. RR /\ ( m / A ) =/= 0 ) ) |
| 54 |
46 52 53
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m / A ) e. ( RR \ { 0 } ) ) |
| 55 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ ( m / A ) e. ( RR \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR ) |
| 56 |
48 54 55
|
syl2anc |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. RR ) |
| 57 |
56
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( vol ` ( `' F " { ( m / A ) } ) ) e. CC ) |
| 58 |
37 47 57
|
mulassd |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( A x. ( m / A ) ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 59 |
44 58
|
eqtr3d |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 60 |
59
|
sumeq2dv |
|- ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 61 |
|
i1frn |
|- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 62 |
28 61
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ran ( ( RR X. { A } ) oF x. F ) e. Fin ) |
| 63 |
|
difss |
|- ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) |
| 64 |
|
ssfi |
|- ( ( ran ( ( RR X. { A } ) oF x. F ) e. Fin /\ ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ ran ( ( RR X. { A } ) oF x. F ) ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin ) |
| 65 |
62 63 64
|
sylancl |
|- ( ( ph /\ A =/= 0 ) -> ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) e. Fin ) |
| 66 |
47 57
|
mulcld |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) e. CC ) |
| 67 |
65 36 66
|
fsummulc2 |
|- ( ( ph /\ A =/= 0 ) -> ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( A x. ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 68 |
60 67
|
eqtr4d |
|- ( ( ph /\ A =/= 0 ) -> sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 69 |
|
itg1val |
|- ( ( ( RR X. { A } ) oF x. F ) e. dom S.1 -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
| 70 |
28 69
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( m x. ( vol ` ( `' ( ( RR X. { A } ) oF x. F ) " { m } ) ) ) ) |
| 71 |
1
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> F e. dom S.1 ) |
| 72 |
|
itg1val |
|- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 73 |
71 72
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) ) |
| 74 |
|
id |
|- ( k = ( m / A ) -> k = ( m / A ) ) |
| 75 |
|
sneq |
|- ( k = ( m / A ) -> { k } = { ( m / A ) } ) |
| 76 |
75
|
imaeq2d |
|- ( k = ( m / A ) -> ( `' F " { k } ) = ( `' F " { ( m / A ) } ) ) |
| 77 |
76
|
fveq2d |
|- ( k = ( m / A ) -> ( vol ` ( `' F " { k } ) ) = ( vol ` ( `' F " { ( m / A ) } ) ) ) |
| 78 |
74 77
|
oveq12d |
|- ( k = ( m / A ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) = ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
| 79 |
|
eqid |
|- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) = ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) |
| 80 |
|
eldifi |
|- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 81 |
4
|
a1i |
|- ( ph -> RR e. _V ) |
| 82 |
7
|
ffnd |
|- ( ph -> F Fn RR ) |
| 83 |
|
eqidd |
|- ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
| 84 |
81 2 82 83
|
ofc1 |
|- ( ( ph /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) ) |
| 85 |
84
|
adantlr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) = ( A x. ( F ` y ) ) ) |
| 86 |
85
|
oveq1d |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( ( A x. ( F ` y ) ) / A ) ) |
| 87 |
7
|
adantr |
|- ( ( ph /\ A =/= 0 ) -> F : RR --> RR ) |
| 88 |
87
|
ffvelcdmda |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. RR ) |
| 89 |
88
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. CC ) |
| 90 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A e. CC ) |
| 91 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> A =/= 0 ) |
| 92 |
89 90 91
|
divcan3d |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( A x. ( F ` y ) ) / A ) = ( F ` y ) ) |
| 93 |
86 92
|
eqtrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) = ( F ` y ) ) |
| 94 |
87
|
ffnd |
|- ( ( ph /\ A =/= 0 ) -> F Fn RR ) |
| 95 |
|
fnfvelrn |
|- ( ( F Fn RR /\ y e. RR ) -> ( F ` y ) e. ran F ) |
| 96 |
94 95
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( F ` y ) e. ran F ) |
| 97 |
93 96
|
eqeltrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) |
| 98 |
97
|
ralrimiva |
|- ( ( ph /\ A =/= 0 ) -> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) |
| 99 |
30
|
ffnd |
|- ( ( ph /\ A =/= 0 ) -> ( ( RR X. { A } ) oF x. F ) Fn RR ) |
| 100 |
|
oveq1 |
|- ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( n / A ) = ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) ) |
| 101 |
100
|
eleq1d |
|- ( n = ( ( ( RR X. { A } ) oF x. F ) ` y ) -> ( ( n / A ) e. ran F <-> ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
| 102 |
101
|
ralrn |
|- ( ( ( RR X. { A } ) oF x. F ) Fn RR -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
| 103 |
99 102
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F <-> A. y e. RR ( ( ( ( RR X. { A } ) oF x. F ) ` y ) / A ) e. ran F ) ) |
| 104 |
98 103
|
mpbird |
|- ( ( ph /\ A =/= 0 ) -> A. n e. ran ( ( RR X. { A } ) oF x. F ) ( n / A ) e. ran F ) |
| 105 |
104
|
r19.21bi |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ran ( ( RR X. { A } ) oF x. F ) ) -> ( n / A ) e. ran F ) |
| 106 |
80 105
|
sylan2 |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ran F ) |
| 107 |
32
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR ) |
| 108 |
107
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. CC ) |
| 109 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A e. CC ) |
| 110 |
|
eldifsni |
|- ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> n =/= 0 ) |
| 111 |
110
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n =/= 0 ) |
| 112 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> A =/= 0 ) |
| 113 |
108 109 111 112
|
divne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) =/= 0 ) |
| 114 |
|
eldifsn |
|- ( ( n / A ) e. ( ran F \ { 0 } ) <-> ( ( n / A ) e. ran F /\ ( n / A ) =/= 0 ) ) |
| 115 |
106 113 114
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( n / A ) e. ( ran F \ { 0 } ) ) |
| 116 |
|
eldifi |
|- ( k e. ( ran F \ { 0 } ) -> k e. ran F ) |
| 117 |
|
fnfvelrn |
|- ( ( ( ( RR X. { A } ) oF x. F ) Fn RR /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 118 |
99 117
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( ( ( RR X. { A } ) oF x. F ) ` y ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 119 |
85 118
|
eqeltrrd |
|- ( ( ( ph /\ A =/= 0 ) /\ y e. RR ) -> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 120 |
119
|
ralrimiva |
|- ( ( ph /\ A =/= 0 ) -> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 121 |
|
oveq2 |
|- ( k = ( F ` y ) -> ( A x. k ) = ( A x. ( F ` y ) ) ) |
| 122 |
121
|
eleq1d |
|- ( k = ( F ` y ) -> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
| 123 |
122
|
ralrn |
|- ( F Fn RR -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
| 124 |
94 123
|
syl |
|- ( ( ph /\ A =/= 0 ) -> ( A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) <-> A. y e. RR ( A x. ( F ` y ) ) e. ran ( ( RR X. { A } ) oF x. F ) ) ) |
| 125 |
120 124
|
mpbird |
|- ( ( ph /\ A =/= 0 ) -> A. k e. ran F ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 126 |
125
|
r19.21bi |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ran F ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 127 |
116 126
|
sylan2 |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) ) |
| 128 |
36
|
adantr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A e. CC ) |
| 129 |
87
|
frnd |
|- ( ( ph /\ A =/= 0 ) -> ran F C_ RR ) |
| 130 |
129
|
ssdifssd |
|- ( ( ph /\ A =/= 0 ) -> ( ran F \ { 0 } ) C_ RR ) |
| 131 |
130
|
sselda |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. RR ) |
| 132 |
131
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k e. CC ) |
| 133 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> A =/= 0 ) |
| 134 |
|
eldifsni |
|- ( k e. ( ran F \ { 0 } ) -> k =/= 0 ) |
| 135 |
134
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> k =/= 0 ) |
| 136 |
128 132 133 135
|
mulne0d |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) =/= 0 ) |
| 137 |
|
eldifsn |
|- ( ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) <-> ( ( A x. k ) e. ran ( ( RR X. { A } ) oF x. F ) /\ ( A x. k ) =/= 0 ) ) |
| 138 |
127 136 137
|
sylanbrc |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( A x. k ) e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) |
| 139 |
|
simpl |
|- ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) -> n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) |
| 140 |
|
ssel2 |
|- ( ( ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) C_ RR /\ n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> n e. RR ) |
| 141 |
32 139 140
|
syl2an |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. RR ) |
| 142 |
141
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> n e. CC ) |
| 143 |
2
|
ad2antrr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. RR ) |
| 144 |
143
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A e. CC ) |
| 145 |
131
|
adantrl |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. RR ) |
| 146 |
145
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> k e. CC ) |
| 147 |
|
simplr |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> A =/= 0 ) |
| 148 |
142 144 146 147
|
divmuld |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( n / A ) = k <-> ( A x. k ) = n ) ) |
| 149 |
148
|
bicomd |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( ( A x. k ) = n <-> ( n / A ) = k ) ) |
| 150 |
|
eqcom |
|- ( n = ( A x. k ) <-> ( A x. k ) = n ) |
| 151 |
|
eqcom |
|- ( k = ( n / A ) <-> ( n / A ) = k ) |
| 152 |
149 150 151
|
3bitr4g |
|- ( ( ( ph /\ A =/= 0 ) /\ ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) /\ k e. ( ran F \ { 0 } ) ) ) -> ( n = ( A x. k ) <-> k = ( n / A ) ) ) |
| 153 |
79 115 138 152
|
f1o2d |
|- ( ( ph /\ A =/= 0 ) -> ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) : ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -1-1-onto-> ( ran F \ { 0 } ) ) |
| 154 |
|
oveq1 |
|- ( n = m -> ( n / A ) = ( m / A ) ) |
| 155 |
|
ovex |
|- ( m / A ) e. _V |
| 156 |
154 79 155
|
fvmpt |
|- ( m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) ) |
| 157 |
156
|
adantl |
|- ( ( ( ph /\ A =/= 0 ) /\ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ) -> ( ( n e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) |-> ( n / A ) ) ` m ) = ( m / A ) ) |
| 158 |
|
i1fima2sn |
|- ( ( F e. dom S.1 /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 159 |
71 158
|
sylan |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { k } ) ) e. RR ) |
| 160 |
131 159
|
remulcld |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. RR ) |
| 161 |
160
|
recnd |
|- ( ( ( ph /\ A =/= 0 ) /\ k e. ( ran F \ { 0 } ) ) -> ( k x. ( vol ` ( `' F " { k } ) ) ) e. CC ) |
| 162 |
78 65 153 157 161
|
fsumf1o |
|- ( ( ph /\ A =/= 0 ) -> sum_ k e. ( ran F \ { 0 } ) ( k x. ( vol ` ( `' F " { k } ) ) ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
| 163 |
73 162
|
eqtrd |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` F ) = sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) |
| 164 |
163
|
oveq2d |
|- ( ( ph /\ A =/= 0 ) -> ( A x. ( S.1 ` F ) ) = ( A x. sum_ m e. ( ran ( ( RR X. { A } ) oF x. F ) \ { 0 } ) ( ( m / A ) x. ( vol ` ( `' F " { ( m / A ) } ) ) ) ) ) |
| 165 |
68 70 164
|
3eqtr4d |
|- ( ( ph /\ A =/= 0 ) -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |
| 166 |
26 165
|
pm2.61dane |
|- ( ph -> ( S.1 ` ( ( RR X. { A } ) oF x. F ) ) = ( A x. ( S.1 ` F ) ) ) |