Step |
Hyp |
Ref |
Expression |
1 |
|
itg2addnclem.1 |
⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
2 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } = { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } |
3 |
2
|
itg2val |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) |
4 |
1
|
supeq1i |
⊢ sup ( 𝐿 , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) |
5 |
|
xrltso |
⊢ < Or ℝ* |
6 |
5
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → < Or ℝ* ) |
7 |
|
simprr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 = ( ∫1 ‘ 𝑓 ) ) |
8 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
9 |
8
|
rexrd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
10 |
9
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
11 |
7 10
|
eqeltrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 ∈ ℝ* ) |
12 |
11
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → 𝑥 ∈ ℝ* ) |
13 |
12
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* |
14 |
|
supxrcl |
⊢ ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* → sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ∈ ℝ* ) |
15 |
13 14
|
mp1i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ∈ ℝ* ) |
16 |
|
fveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
17 |
16
|
eqeq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑧 ) = 0 ↔ ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
18 |
16
|
oveq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) = ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) |
19 |
17 18
|
ifbieq2d |
⊢ ( 𝑔 = 𝑓 → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
20 |
19
|
mpteq2dv |
⊢ ( 𝑔 = 𝑓 → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
21 |
20
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
22 |
21
|
rexbidv |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑔 = 𝑓 → ( ∫1 ‘ 𝑔 ) = ( ∫1 ‘ 𝑓 ) ) |
24 |
23
|
eqeq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) |
25 |
22 24
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) |
27 |
|
breq2 |
⊢ ( 0 = if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) → ( ( 𝑓 ‘ 𝑧 ) ≤ 0 ↔ ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
28 |
|
breq2 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) = if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) → ( ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ↔ ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
29 |
|
id |
⊢ ( ( 𝑓 ‘ 𝑧 ) = 0 → ( 𝑓 ‘ 𝑧 ) = 0 ) |
30 |
|
0le0 |
⊢ 0 ≤ 0 |
31 |
29 30
|
eqbrtrdi |
⊢ ( ( 𝑓 ‘ 𝑧 ) = 0 → ( 𝑓 ‘ 𝑧 ) ≤ 0 ) |
32 |
31
|
adantl |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) = 0 ) → ( 𝑓 ‘ 𝑧 ) ≤ 0 ) |
33 |
|
rpge0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 ≤ 𝑦 ) |
34 |
33
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → 0 ≤ 𝑦 ) |
35 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
36 |
35
|
ffvelrnda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
37 |
36
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
38 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
39 |
38
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
40 |
37 39
|
addge01d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 0 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
41 |
34 40
|
mpbid |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) |
42 |
41
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑓 ‘ 𝑧 ) = 0 ) → ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) |
43 |
27 28 32 42
|
ifbothda |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
44 |
43
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
45 |
35
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑓 : ℝ ⟶ ℝ ) |
46 |
45
|
ffvelrnda |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
47 |
46
|
rexrd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ* ) |
48 |
|
0re |
⊢ 0 ∈ ℝ |
49 |
38
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
50 |
46 49
|
readdcld |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ∈ ℝ ) |
51 |
|
ifcl |
⊢ ( ( 0 ∈ ℝ ∧ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ∈ ℝ ) → if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ ) |
52 |
48 50 51
|
sylancr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ ) |
53 |
52
|
rexrd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ* ) |
54 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
55 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐹 : ℝ ⟶ ℝ* ) |
56 |
54 55
|
mpan2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 : ℝ ⟶ ℝ* ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : ℝ ⟶ ℝ* ) |
58 |
57
|
ffvelrnda |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) |
59 |
|
xrletr |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ℝ* ∧ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) → ( ( ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∧ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
60 |
47 53 58 59
|
syl3anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∧ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
61 |
44 60
|
mpand |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
62 |
61
|
ralimdva |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ℝ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) → ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
63 |
|
reex |
⊢ ℝ ∈ V |
64 |
63
|
a1i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ℝ ∈ V ) |
65 |
|
eqidd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
66 |
|
id |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
67 |
66
|
feqmptd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 = ( 𝑧 ∈ ℝ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
68 |
67
|
ad2antrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 = ( 𝑧 ∈ ℝ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
69 |
64 52 58 65 68
|
ofrfval2 |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
70 |
35
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑧 ∈ ℝ ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
71 |
70
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑓 = ( 𝑧 ∈ ℝ ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
72 |
64 46 58 71 68
|
ofrfval2 |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
73 |
62 69 72
|
3imtr4d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹 ) ) |
74 |
73
|
rexlimdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹 ) ) |
75 |
74
|
anim1d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
76 |
75
|
reximdva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑓 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
77 |
26 76
|
syl5bi |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
78 |
77
|
ss2abdv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ) |
79 |
78
|
sseld |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑏 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } → 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ) ) |
80 |
|
simp3r |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 = ( ∫1 ‘ 𝑓 ) ) |
81 |
9
|
3ad2ant2 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
82 |
80 81
|
eqeltrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 ∈ ℝ* ) |
83 |
82
|
rexlimdv3a |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → 𝑥 ∈ ℝ* ) ) |
84 |
83
|
abssdv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* ) |
85 |
|
xrsupss |
⊢ ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* → ∃ 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) ) |
86 |
84 85
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) ) |
87 |
6 86
|
supub |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } → ¬ sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) < 𝑏 ) ) |
88 |
79 87
|
syld |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑏 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } → ¬ sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) < 𝑏 ) ) |
89 |
88
|
imp |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) → ¬ sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) < 𝑏 ) |
90 |
|
supxrlub |
⊢ ( ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ↔ ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) |
91 |
13 90
|
mpan |
⊢ ( 𝑏 ∈ ℝ* → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ↔ ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) |
92 |
91
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ↔ ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) |
93 |
|
simprrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → 𝑠 = ( ∫1 ‘ 𝑓 ) ) |
94 |
93
|
breq2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 < 𝑠 ↔ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ) |
95 |
|
simplll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
96 |
|
i1f0 |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
97 |
|
2rp |
⊢ 2 ∈ ℝ+ |
98 |
97
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
99 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
100 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
101 |
99 100
|
sylib |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
102 |
101
|
simprd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
103 |
102
|
ralrimiva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑧 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
104 |
63
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ℝ ∈ V ) |
105 |
|
c0ex |
⊢ 0 ∈ V |
106 |
105
|
a1i |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → 0 ∈ V ) |
107 |
|
eqidd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑧 ∈ ℝ ↦ 0 ) = ( 𝑧 ∈ ℝ ↦ 0 ) ) |
108 |
104 106 99 107 67
|
ofrfval2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
109 |
103 108
|
mpbird |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
110 |
109
|
ralrimivw |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
111 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
112 |
98 110 111
|
sylancr |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
113 |
|
fveq2 |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ∫1 ‘ 𝑔 ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) |
114 |
|
itg10 |
⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |
115 |
113 114
|
eqtr2di |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → 0 = ( ∫1 ‘ 𝑔 ) ) |
116 |
115
|
biantrud |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) ) |
117 |
|
fveq1 |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( 𝑔 ‘ 𝑧 ) = ( ( ℝ × { 0 } ) ‘ 𝑧 ) ) |
118 |
105
|
fvconst2 |
⊢ ( 𝑧 ∈ ℝ → ( ( ℝ × { 0 } ) ‘ 𝑧 ) = 0 ) |
119 |
117 118
|
sylan9eq |
⊢ ( ( 𝑔 = ( ℝ × { 0 } ) ∧ 𝑧 ∈ ℝ ) → ( 𝑔 ‘ 𝑧 ) = 0 ) |
120 |
|
iftrue |
⊢ ( ( 𝑔 ‘ 𝑧 ) = 0 → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = 0 ) |
121 |
119 120
|
syl |
⊢ ( ( 𝑔 = ( ℝ × { 0 } ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = 0 ) |
122 |
121
|
mpteq2dva |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ 0 ) ) |
123 |
122
|
breq1d |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) ) |
124 |
123
|
rexbidv |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) ) |
125 |
116 124
|
bitr3d |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) ) |
126 |
125
|
rspcev |
⊢ ( ( ( ℝ × { 0 } ) ∈ dom ∫1 ∧ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
127 |
96 112 126
|
sylancr |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
128 |
|
id |
⊢ ( 𝑏 = -∞ → 𝑏 = -∞ ) |
129 |
|
mnflt |
⊢ ( 0 ∈ ℝ → -∞ < 0 ) |
130 |
48 129
|
mp1i |
⊢ ( 𝑏 = -∞ → -∞ < 0 ) |
131 |
128 130
|
eqbrtrd |
⊢ ( 𝑏 = -∞ → 𝑏 < 0 ) |
132 |
|
eqeq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 = ( ∫1 ‘ 𝑔 ) ↔ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
133 |
132
|
anbi2d |
⊢ ( 𝑎 = 0 → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) ) |
134 |
133
|
rexbidv |
⊢ ( 𝑎 = 0 → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) ) |
135 |
|
breq2 |
⊢ ( 𝑎 = 0 → ( 𝑏 < 𝑎 ↔ 𝑏 < 0 ) ) |
136 |
134 135
|
anbi12d |
⊢ ( 𝑎 = 0 → ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ↔ ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 0 ) ) ) |
137 |
105 136
|
spcev |
⊢ ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 0 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
138 |
127 131 137
|
syl2an |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 = -∞ ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
139 |
95 138
|
sylan |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 = -∞ ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
140 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → 𝑏 ∈ ℝ* ) |
141 |
8
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
142 |
141
|
ad3antlr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
143 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝑏 ∈ ℝ* ) |
144 |
|
ngtmnft |
⊢ ( 𝑏 ∈ ℝ* → ( 𝑏 = -∞ ↔ ¬ -∞ < 𝑏 ) ) |
145 |
144
|
biimprd |
⊢ ( 𝑏 ∈ ℝ* → ( ¬ -∞ < 𝑏 → 𝑏 = -∞ ) ) |
146 |
145
|
necon1ad |
⊢ ( 𝑏 ∈ ℝ* → ( 𝑏 ≠ -∞ → -∞ < 𝑏 ) ) |
147 |
146
|
imp |
⊢ ( ( 𝑏 ∈ ℝ* ∧ 𝑏 ≠ -∞ ) → -∞ < 𝑏 ) |
148 |
143 147
|
sylan |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → -∞ < 𝑏 ) |
149 |
|
simpr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → 𝑏 ∈ ℝ* ) |
150 |
9
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
151 |
149 150
|
anim12i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) ) |
152 |
|
xrltle |
⊢ ( ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) ) |
153 |
152
|
imp |
⊢ ( ( ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) |
154 |
151 153
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) |
155 |
154
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) |
156 |
|
xrre |
⊢ ( ( ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ ) ∧ ( -∞ < 𝑏 ∧ 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) ) → 𝑏 ∈ ℝ ) |
157 |
140 142 148 155 156
|
syl22anc |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → 𝑏 ∈ ℝ ) |
158 |
127
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
159 |
|
simplrl |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → 𝑏 < ( ∫1 ‘ 𝑓 ) ) |
160 |
|
simplrl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 𝑓 ∈ dom ∫1 ) |
161 |
|
simpl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → 𝑓 ∈ dom ∫1 ) |
162 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ dom 𝑓 |
163 |
162 35
|
fssdm |
⊢ ( 𝑓 ∈ dom ∫1 → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ ) |
164 |
163
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ ) |
165 |
|
simpr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) |
166 |
|
fdm |
⊢ ( 𝑓 : ℝ ⟶ ℝ → dom 𝑓 = ℝ ) |
167 |
166
|
eqcomd |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ℝ = dom 𝑓 ) |
168 |
|
ffun |
⊢ ( 𝑓 : ℝ ⟶ ℝ → Fun 𝑓 ) |
169 |
|
difpreima |
⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
170 |
168 169
|
syl |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
171 |
|
cnvimarndm |
⊢ ( ◡ 𝑓 “ ran 𝑓 ) = dom 𝑓 |
172 |
171
|
difeq1i |
⊢ ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) = ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) |
173 |
170 172
|
eqtrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
174 |
167 173
|
difeq12d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( dom 𝑓 ∖ ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
175 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ { 0 } ) ⊆ dom 𝑓 |
176 |
|
dfss4 |
⊢ ( ( ◡ 𝑓 “ { 0 } ) ⊆ dom 𝑓 ↔ ( dom 𝑓 ∖ ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) = ( ◡ 𝑓 “ { 0 } ) ) |
177 |
175 176
|
mpbi |
⊢ ( dom 𝑓 ∖ ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) = ( ◡ 𝑓 “ { 0 } ) |
178 |
174 177
|
eqtrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( ◡ 𝑓 “ { 0 } ) ) |
179 |
178
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
180 |
|
ffn |
⊢ ( 𝑓 : ℝ ⟶ ℝ → 𝑓 Fn ℝ ) |
181 |
|
fniniseg |
⊢ ( 𝑓 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑓 ‘ 𝑧 ) = 0 ) ) ) |
182 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑓 ‘ 𝑧 ) = 0 ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
183 |
181 182
|
syl6bi |
⊢ ( 𝑓 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
184 |
180 183
|
syl |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
185 |
179 184
|
sylbid |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
186 |
35 185
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
187 |
186
|
imp |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
188 |
187
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) ∧ 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
189 |
161 164 165 188
|
itg10a |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( ∫1 ‘ 𝑓 ) = 0 ) |
190 |
160 189
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( ∫1 ‘ 𝑓 ) = 0 ) |
191 |
159 190
|
breqtrd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → 𝑏 < 0 ) |
192 |
158 191 137
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
193 |
|
simprl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → 𝑓 ∈ dom ∫1 ) |
194 |
|
simpr |
⊢ ( ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
195 |
193 194
|
anim12i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ) |
196 |
63
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ℝ ∈ V ) |
197 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑢 ) ∈ V |
198 |
197
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑓 ‘ 𝑢 ) ∈ V ) |
199 |
|
ovex |
⊢ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ V |
200 |
199 105
|
ifex |
⊢ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V |
201 |
200
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V ) |
202 |
35
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑢 ∈ ℝ ↦ ( 𝑓 ‘ 𝑢 ) ) ) |
203 |
202
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 = ( 𝑢 ∈ ℝ ↦ ( 𝑓 ‘ 𝑢 ) ) ) |
204 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
205 |
196 198 201 203 204
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
206 |
|
ovif2 |
⊢ ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑢 ) − 0 ) ) |
207 |
171 166
|
syl5eq |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ran 𝑓 ) = ℝ ) |
208 |
207
|
difeq1d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) = ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
209 |
170 208
|
eqtrd |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
210 |
209
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
211 |
35 210
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
212 |
211
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
213 |
|
simpr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → 𝑢 ∈ ℝ ) |
214 |
213
|
biantrurd |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
215 |
|
eldif |
⊢ ( 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ↔ ( 𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
216 |
214 215
|
bitr4di |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
217 |
212 216
|
bitr4d |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
218 |
217
|
con2bid |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
219 |
|
fniniseg |
⊢ ( 𝑓 Fn ℝ → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
220 |
35 180 219
|
3syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
221 |
220
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
222 |
218 221
|
bitr3d |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
223 |
|
oveq1 |
⊢ ( ( 𝑓 ‘ 𝑢 ) = 0 → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = ( 0 − 0 ) ) |
224 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
225 |
223 224
|
eqtrdi |
⊢ ( ( 𝑓 ‘ 𝑢 ) = 0 → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) |
226 |
225
|
adantl |
⊢ ( ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) |
227 |
222 226
|
syl6bi |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) ) |
228 |
227
|
imp |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) ∧ ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) |
229 |
228
|
ifeq2da |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑢 ) − 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
230 |
206 229
|
syl5eq |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
231 |
230
|
mpteq2dva |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
232 |
205 231
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
233 |
|
simpll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 ∈ dom ∫1 ) |
234 |
199
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ V ) |
235 |
|
1ex |
⊢ 1 ∈ V |
236 |
235 105
|
ifex |
⊢ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V |
237 |
236
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V ) |
238 |
|
fconstmpt |
⊢ ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑢 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
239 |
238
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑢 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
240 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) |
241 |
196 234 237 239 240
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) |
242 |
|
ovif2 |
⊢ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) |
243 |
|
resubcl |
⊢ ( ( ( ∫1 ‘ 𝑓 ) ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
244 |
8 243
|
sylan |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
245 |
244
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
246 |
|
2re |
⊢ 2 ∈ ℝ |
247 |
|
i1fima |
⊢ ( 𝑓 ∈ dom ∫1 → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ) |
248 |
|
mblvol |
⊢ ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
249 |
247 248
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
250 |
|
neldifsn |
⊢ ¬ 0 ∈ ( ran 𝑓 ∖ { 0 } ) |
251 |
|
i1fima2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ¬ 0 ∈ ( ran 𝑓 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
252 |
250 251
|
mpan2 |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
253 |
249 252
|
eqeltrrd |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
254 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
255 |
246 253 254
|
sylancr |
⊢ ( 𝑓 ∈ dom ∫1 → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
256 |
255
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
257 |
|
2cnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 2 ∈ ℂ ) |
258 |
253
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
259 |
258
|
recnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℂ ) |
260 |
|
2ne0 |
⊢ 2 ≠ 0 |
261 |
260
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 2 ≠ 0 ) |
262 |
|
simpr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) |
263 |
257 259 261 262
|
mulne0d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ≠ 0 ) |
264 |
245 256 263
|
redivcld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ ) |
265 |
264
|
recnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
266 |
265
|
mulid1d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
267 |
265
|
mul01d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) = 0 ) |
268 |
266 267
|
ifeq12d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
269 |
242 268
|
syl5eq |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
270 |
269
|
mpteq2dv |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
271 |
241 270
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
272 |
|
eqid |
⊢ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) |
273 |
272
|
i1f1 |
⊢ ( ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
274 |
247 252 273
|
syl2anc |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
275 |
274
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
276 |
275 264
|
i1fmulc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ∈ dom ∫1 ) |
277 |
271 276
|
eqeltrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
278 |
|
i1fsub |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
279 |
233 277 278
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
280 |
232 279
|
eqeltrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
281 |
|
iftrue |
⊢ ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
282 |
|
iftrue |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
283 |
282
|
breq2d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
284 |
283 282
|
ifbieq1d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
285 |
|
iftrue |
⊢ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
286 |
284 285
|
sylan9eqr |
⊢ ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
287 |
281 286
|
eqtr4d |
⊢ ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
288 |
|
iffalse |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
289 |
|
ianor |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∨ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
290 |
283
|
ifbid |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
291 |
|
iffalse |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
292 |
290 291
|
sylan9eqr |
⊢ ( ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
293 |
292
|
ex |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
294 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
295 |
|
eqid |
⊢ 0 = 0 |
296 |
|
eqeq1 |
⊢ ( if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) → ( if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ↔ if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
297 |
|
eqeq1 |
⊢ ( 0 = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) → ( 0 = 0 ↔ if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
298 |
296 297
|
ifboth |
⊢ ( ( if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ∧ 0 = 0 ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
299 |
294 295 298
|
sylancl |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
300 |
293 299
|
pm2.61d1 |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
301 |
300 299
|
jaoi |
⊢ ( ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∨ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
302 |
289 301
|
sylbi |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
303 |
288 302
|
eqtr4d |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
304 |
287 303
|
pm2.61i |
⊢ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) |
305 |
|
eleq1w |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
306 |
|
fveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) |
307 |
306
|
oveq1d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
308 |
305 307
|
ifbieq1d |
⊢ ( 𝑢 = 𝑧 → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
309 |
|
eqid |
⊢ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
310 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ V |
311 |
310 105
|
ifex |
⊢ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V |
312 |
308 309 311
|
fvmpt |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
313 |
312
|
breq2d |
⊢ ( 𝑧 ∈ ℝ → ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) ↔ 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
314 |
313 312
|
ifbieq1d |
⊢ ( 𝑧 ∈ ℝ → if ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
315 |
304 314
|
eqtr4id |
⊢ ( 𝑧 ∈ ℝ → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , 0 ) ) |
316 |
315
|
mpteq2ia |
⊢ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , 0 ) ) |
317 |
316
|
i1fpos |
⊢ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
318 |
280 317
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
319 |
195 318
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
320 |
195 264
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ ) |
321 |
8
|
ad2antrl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
322 |
321 194 243
|
syl2an |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
323 |
322
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
324 |
255
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
325 |
324
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
326 |
|
simprl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 𝑏 < ( ∫1 ‘ 𝑓 ) ) |
327 |
|
simprr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 𝑏 ∈ ℝ ) |
328 |
141
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
329 |
327 328
|
posdifd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 0 < ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) ) |
330 |
326 329
|
mpbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 0 < ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) |
331 |
330
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) |
332 |
253
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
333 |
332
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
334 |
|
mblss |
⊢ ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ ) |
335 |
|
ovolge0 |
⊢ ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
336 |
247 334 335
|
3syl |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
337 |
|
ltlen |
⊢ ( ( 0 ∈ ℝ ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ ( 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) ) |
338 |
48 253 337
|
sylancr |
⊢ ( 𝑓 ∈ dom ∫1 → ( 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ ( 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) ) |
339 |
338
|
biimprd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
340 |
336 339
|
mpand |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
341 |
340
|
ad2antrl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
342 |
341
|
imp |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
343 |
342
|
adantlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
344 |
|
2pos |
⊢ 0 < 2 |
345 |
|
mulgt0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 < 2 ) ∧ ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ∧ 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → 0 < ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
346 |
246 344 345
|
mpanl12 |
⊢ ( ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ∧ 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → 0 < ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
347 |
333 343 346
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
348 |
323 325 331 347
|
divgt0d |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
349 |
320 348
|
elrpd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ+ ) |
350 |
|
simprl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑓 ∘r ≤ 𝐹 ) |
351 |
350
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 ∘r ≤ 𝐹 ) |
352 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 Fn ℝ ) |
353 |
35 180
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 Fn ℝ ) |
354 |
353
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑓 Fn ℝ ) |
355 |
|
simpr |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → 𝑓 Fn ℝ ) |
356 |
|
simpl |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → 𝐹 Fn ℝ ) |
357 |
63
|
a1i |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → ℝ ∈ V ) |
358 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
359 |
|
eqidd |
⊢ ( ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
360 |
|
eqidd |
⊢ ( ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
361 |
355 356 357 357 358 359 360
|
ofrfval |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
362 |
352 354 361
|
syl2an |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
363 |
362
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
364 |
|
simpl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑓 ∈ dom ∫1 ) |
365 |
364
|
anim2i |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ) |
366 |
365 194
|
anim12i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ) |
367 |
|
breq1 |
⊢ ( 0 = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑧 ) ↔ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
368 |
|
breq1 |
⊢ ( ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
369 |
|
simplll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
370 |
369
|
ffvelrnda |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
371 |
370 100
|
sylib |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
372 |
371
|
simprd |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
373 |
372
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
374 |
|
oveq1 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
375 |
374
|
breq1d |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
376 |
|
oveq1 |
⊢ ( 0 = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
377 |
376
|
breq1d |
⊢ ( 0 = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
378 |
35
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 : ℝ ⟶ ℝ ) |
379 |
378
|
ffvelrnda |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
380 |
379
|
recnd |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℂ ) |
381 |
244
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℂ ) |
382 |
381
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℂ ) |
383 |
255
|
recnd |
⊢ ( 𝑓 ∈ dom ∫1 → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℂ ) |
384 |
383
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℂ ) |
385 |
382 384 263
|
divcld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
386 |
385
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
387 |
386
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
388 |
380 387
|
npcand |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( 𝑓 ‘ 𝑧 ) ) |
389 |
388
|
adantr |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( 𝑓 ‘ 𝑧 ) ) |
390 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
391 |
389 390
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
392 |
391
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ∧ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
393 |
288
|
pm2.24d |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
394 |
393
|
impcom |
⊢ ( ( ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ∧ ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
395 |
394
|
adantll |
⊢ ( ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ∧ ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
396 |
375 377 392 395
|
ifbothda |
⊢ ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) → ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
397 |
367 368 373 396
|
ifbothda |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
398 |
397
|
ex |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
399 |
366 398
|
sylanl1 |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
400 |
399
|
ralimdva |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) → ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
401 |
363 400
|
sylbid |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘r ≤ 𝐹 → ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
402 |
351 401
|
mpd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
403 |
|
ovex |
⊢ ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ V |
404 |
105 403
|
ifex |
⊢ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ∈ V |
405 |
404
|
a1i |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ∈ V ) |
406 |
|
eqidd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ) |
407 |
104 405 99 406 67
|
ofrfval2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
408 |
407
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
409 |
402 408
|
mpbird |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ) |
410 |
|
oveq2 |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
411 |
410
|
ifeq2d |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
412 |
411
|
mpteq2dv |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ) |
413 |
412
|
breq1d |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ) ) |
414 |
413
|
rspcev |
⊢ ( ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ+ ∧ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) |
415 |
349 409 414
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) |
416 |
|
fveq2 |
⊢ ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = 𝑔 → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) |
417 |
416
|
eqcoms |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) |
418 |
417
|
biantrud |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) ) |
419 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
420 |
419
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
421 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( 𝑔 ‘ 𝑧 ) = ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) ) |
422 |
310 105
|
ifex |
⊢ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V |
423 |
|
eqid |
⊢ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
424 |
423
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ ℝ ∧ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
425 |
422 424
|
mpan2 |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
426 |
421 425
|
sylan9eq |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑔 ‘ 𝑧 ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
427 |
426
|
eqeq1d |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑔 ‘ 𝑧 ) = 0 ↔ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ) |
428 |
426
|
oveq1d |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) |
429 |
427 428
|
ifbieq2d |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) |
430 |
420 429
|
mpteq2da |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ) |
431 |
430
|
breq1d |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
432 |
431
|
rexbidv |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
433 |
418 432
|
bitr3d |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
434 |
433
|
rspcev |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) |
435 |
319 415 434
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) |
436 |
|
simplrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 ∈ ℝ ) |
437 |
199
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ V ) |
438 |
235 105
|
ifex |
⊢ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V |
439 |
438
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V ) |
440 |
|
fconstmpt |
⊢ ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑧 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
441 |
440
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑧 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
442 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) |
443 |
196 437 439 441 442
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) |
444 |
|
ovif2 |
⊢ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) |
445 |
266 267
|
ifeq12d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
446 |
444 445
|
syl5eq |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
447 |
446
|
mpteq2dv |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
448 |
443 447
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
449 |
|
eqid |
⊢ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) |
450 |
449
|
i1f1 |
⊢ ( ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
451 |
247 252 450
|
syl2anc |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
452 |
451
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
453 |
452 264
|
i1fmulc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ∈ dom ∫1 ) |
454 |
448 453
|
eqeltrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
455 |
|
i1fsub |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
456 |
233 454 455
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
457 |
|
itg1cl |
⊢ ( ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
458 |
456 457
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
459 |
458
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
460 |
318
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
461 |
|
itg1cl |
⊢ ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
462 |
460 461
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
463 |
|
simplrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ 𝑓 ) ) |
464 |
|
simpr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
465 |
8
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
466 |
97
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → 2 ∈ ℝ+ ) |
467 |
464 465 466
|
ltdiv1d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ ( 𝑏 / 2 ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
468 |
|
recn |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℂ ) |
469 |
468
|
2halvesd |
⊢ ( 𝑏 ∈ ℝ → ( ( 𝑏 / 2 ) + ( 𝑏 / 2 ) ) = 𝑏 ) |
470 |
469
|
oveq1d |
⊢ ( 𝑏 ∈ ℝ → ( ( ( 𝑏 / 2 ) + ( 𝑏 / 2 ) ) − ( 𝑏 / 2 ) ) = ( 𝑏 − ( 𝑏 / 2 ) ) ) |
471 |
468
|
halfcld |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 / 2 ) ∈ ℂ ) |
472 |
471 471
|
pncand |
⊢ ( 𝑏 ∈ ℝ → ( ( ( 𝑏 / 2 ) + ( 𝑏 / 2 ) ) − ( 𝑏 / 2 ) ) = ( 𝑏 / 2 ) ) |
473 |
470 472
|
eqtr3d |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 − ( 𝑏 / 2 ) ) = ( 𝑏 / 2 ) ) |
474 |
473
|
breq1d |
⊢ ( 𝑏 ∈ ℝ → ( ( 𝑏 − ( 𝑏 / 2 ) ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ↔ ( 𝑏 / 2 ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
475 |
474
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( 𝑏 − ( 𝑏 / 2 ) ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ↔ ( 𝑏 / 2 ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
476 |
|
rehalfcl |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 / 2 ) ∈ ℝ ) |
477 |
476
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 / 2 ) ∈ ℝ ) |
478 |
8
|
rehalfcld |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℝ ) |
479 |
478
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℝ ) |
480 |
464 477 479
|
ltsubaddd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( 𝑏 − ( 𝑏 / 2 ) ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
481 |
467 475 480
|
3bitr2d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
482 |
481
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
483 |
482
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
484 |
463 483
|
mpbid |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
485 |
452 264
|
itg1mulc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) ) |
486 |
448
|
fveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
487 |
449
|
itg11 |
⊢ ( ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
488 |
247 252 487
|
syl2anc |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
489 |
488
|
oveq2d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
490 |
489
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
491 |
252
|
recnd |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℂ ) |
492 |
491
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℂ ) |
493 |
265 492
|
mulcomd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) = ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
494 |
249
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
495 |
494
|
oveq1d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) = ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) ) |
496 |
259 382
|
mulcomd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
497 |
495 496
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
498 |
497
|
oveq1d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
499 |
492 382 384 263
|
divassd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) = ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
500 |
382 257 259 261 262
|
divcan5rd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
501 |
498 499 500
|
3eqtr3d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
502 |
490 493 501
|
3eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
503 |
485 486 502
|
3eqtr3d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
504 |
503
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) ) |
505 |
|
itg1sub |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
506 |
233 454 505
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
507 |
8
|
recnd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
508 |
507
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
509 |
468
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 ∈ ℂ ) |
510 |
508 509 257 261
|
divsubdird |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) |
511 |
510
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) ) |
512 |
507
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
513 |
512
|
halfcld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℂ ) |
514 |
471
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 / 2 ) ∈ ℂ ) |
515 |
512 513 514
|
subsubd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) ) |
516 |
515
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) ) |
517 |
507
|
2halvesd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ∫1 ‘ 𝑓 ) ) |
518 |
517
|
oveq1d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( ( ∫1 ‘ 𝑓 ) / 2 ) ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
519 |
507
|
halfcld |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℂ ) |
520 |
519 519
|
pncand |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( ( ∫1 ‘ 𝑓 ) / 2 ) ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) / 2 ) ) |
521 |
518 520
|
eqtr3d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) / 2 ) ) |
522 |
521
|
oveq1d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
523 |
522
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
524 |
511 516 523
|
3eqtrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) ) |
525 |
504 506 524
|
3eqtr4d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
526 |
525
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
527 |
484 526
|
breqtrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
528 |
456
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
529 |
|
id |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) |
530 |
529
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) |
531 |
233 36
|
sylan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
532 |
264
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ ) |
533 |
531 532
|
resubcld |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ ℝ ) |
534 |
533
|
leidd |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
535 |
534
|
adantr |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
536 |
285
|
breq2d |
⊢ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
537 |
536
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
538 |
535 537
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
539 |
533
|
adantr |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ ℝ ) |
540 |
48
|
a1i |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → 0 ∈ ℝ ) |
541 |
48
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → 0 ∈ ℝ ) |
542 |
533 541
|
ltnled |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) < 0 ↔ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
543 |
542
|
biimpar |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) < 0 ) |
544 |
539 540 543
|
ltled |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ 0 ) |
545 |
|
iffalse |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
546 |
545
|
breq2d |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ 0 ) ) |
547 |
546
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ 0 ) ) |
548 |
544 547
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
549 |
538 548
|
pm2.61dan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
550 |
530 549
|
sylan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
551 |
550
|
adantr |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
552 |
|
iftrue |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
553 |
552
|
oveq2d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
554 |
|
iba |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ↔ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
555 |
554
|
bicomd |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
556 |
555
|
ifbid |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
557 |
553 556
|
breq12d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
558 |
557
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
559 |
551 558
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
560 |
35
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 : ℝ ⟶ ℝ ) |
561 |
170
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑧 ∈ ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
562 |
|
eldif |
⊢ ( 𝑧 ∈ ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
563 |
561 562
|
bitrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
564 |
563
|
notbid |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
565 |
564
|
adantr |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
566 |
|
pm4.53 |
⊢ ( ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ↔ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∨ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
567 |
207
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ↔ 𝑧 ∈ ℝ ) ) |
568 |
567
|
biimpar |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ) |
569 |
568
|
pm2.24d |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
570 |
181
|
simplbda |
⊢ ( ( 𝑓 Fn ℝ ∧ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
571 |
570
|
ex |
⊢ ( 𝑓 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
572 |
180 571
|
syl |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
573 |
572
|
adantr |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
574 |
569 573
|
jaod |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∨ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
575 |
566 574
|
syl5bi |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
576 |
565 575
|
sylbid |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
577 |
576
|
imp |
⊢ ( ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
578 |
560 577
|
sylanl1 |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
579 |
578
|
oveq1d |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − 0 ) = ( 0 − 0 ) ) |
580 |
579 224
|
eqtrdi |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − 0 ) = 0 ) |
581 |
580 30
|
eqbrtrdi |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − 0 ) ≤ 0 ) |
582 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) = 0 ) |
583 |
582
|
oveq2d |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( ( 𝑓 ‘ 𝑧 ) − 0 ) ) |
584 |
289 288
|
sylbir |
⊢ ( ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∨ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
585 |
584
|
olcs |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
586 |
583 585
|
breq12d |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − 0 ) ≤ 0 ) ) |
587 |
586
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − 0 ) ≤ 0 ) ) |
588 |
581 587
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
589 |
559 588
|
pm2.61dan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
590 |
589
|
ralrimiva |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∀ 𝑧 ∈ ℝ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
591 |
63
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ℝ ∈ V ) |
592 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ V |
593 |
592
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ V ) |
594 |
422
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V ) |
595 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
596 |
595
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ V ) |
597 |
199 105
|
ifex |
⊢ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V |
598 |
597
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V ) |
599 |
70
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 = ( 𝑧 ∈ ℝ ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
600 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
601 |
591 596 598 599 600
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
602 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
603 |
591 593 594 601 602
|
ofrfval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
604 |
590 603
|
mpbird |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
605 |
|
itg1le |
⊢ ( ( ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ≤ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
606 |
528 460 604 605
|
syl3anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ≤ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
607 |
436 459 462 527 606
|
ltletrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
608 |
607
|
adantllr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
609 |
608
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
610 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ∈ V |
611 |
|
eqeq1 |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( 𝑎 = ( ∫1 ‘ 𝑔 ) ↔ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) |
612 |
611
|
anbi2d |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) ) |
613 |
612
|
rexbidv |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) ) |
614 |
|
breq2 |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( 𝑏 < 𝑎 ↔ 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) ) |
615 |
613 614
|
anbi12d |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ↔ ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) ) ) |
616 |
610 615
|
spcev |
⊢ ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
617 |
435 609 616
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
618 |
192 617
|
pm2.61dane |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
619 |
618
|
expr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → ( 𝑏 ∈ ℝ → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
620 |
619
|
adantllr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → ( 𝑏 ∈ ℝ → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
621 |
620
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → ( 𝑏 ∈ ℝ → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
622 |
157 621
|
mpd |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
623 |
139 622
|
pm2.61dane |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
624 |
623
|
ex |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
625 |
94 624
|
sylbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 < 𝑠 → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
626 |
625
|
imp |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < 𝑠 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
627 |
626
|
an32s |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ 𝑏 < 𝑠 ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
628 |
627
|
rexlimdvaa |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ 𝑏 < 𝑠 ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
629 |
628
|
expimpd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ( 𝑏 < 𝑠 ∧ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
630 |
629
|
ancomsd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 < 𝑠 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
631 |
630
|
exlimdv |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ∃ 𝑠 ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 < 𝑠 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
632 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 = ( ∫1 ‘ 𝑓 ) ↔ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) |
633 |
632
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ↔ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) |
634 |
633
|
rexbidv |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) |
635 |
634
|
rexab |
⊢ ( ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ↔ ∃ 𝑠 ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 < 𝑠 ) ) |
636 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ) |
637 |
636
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ) ) |
638 |
637
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ) ) |
639 |
638
|
rexab |
⊢ ( ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ↔ ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
640 |
631 635 639
|
3imtr4g |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 → ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ) ) |
641 |
92 640
|
sylbid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) → ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ) ) |
642 |
641
|
impr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑏 ∈ ℝ* ∧ 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) ) → ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ) |
643 |
6 15 89 642
|
eqsupd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) |
644 |
4 643
|
syl5eq |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → sup ( 𝐿 , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) |
645 |
3 644
|
eqtr4d |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( 𝐿 , ℝ* , < ) ) |