| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itg2addnclem.1 |
⊢ 𝐿 = { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } |
| 2 |
|
eqid |
⊢ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } = { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } |
| 3 |
2
|
itg2val |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) |
| 4 |
1
|
supeq1i |
⊢ sup ( 𝐿 , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) |
| 5 |
|
xrltso |
⊢ < Or ℝ* |
| 6 |
5
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → < Or ℝ* ) |
| 7 |
|
simprr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 = ( ∫1 ‘ 𝑓 ) ) |
| 8 |
|
itg1cl |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 9 |
8
|
rexrd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
| 11 |
7 10
|
eqeltrd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 ∈ ℝ* ) |
| 12 |
11
|
rexlimiva |
⊢ ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → 𝑥 ∈ ℝ* ) |
| 13 |
12
|
abssi |
⊢ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* |
| 14 |
|
supxrcl |
⊢ ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* → sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 15 |
13 14
|
mp1i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 16 |
|
fveq1 |
⊢ ( 𝑔 = 𝑓 → ( 𝑔 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑧 ) = 0 ↔ ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 18 |
16
|
oveq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) = ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) |
| 19 |
17 18
|
ifbieq2d |
⊢ ( 𝑔 = 𝑓 → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑔 = 𝑓 → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
| 21 |
20
|
breq1d |
⊢ ( 𝑔 = 𝑓 → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
| 22 |
21
|
rexbidv |
⊢ ( 𝑔 = 𝑓 → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑔 = 𝑓 → ( ∫1 ‘ 𝑔 ) = ( ∫1 ‘ 𝑓 ) ) |
| 24 |
23
|
eqeq2d |
⊢ ( 𝑔 = 𝑓 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) |
| 25 |
22 24
|
anbi12d |
⊢ ( 𝑔 = 𝑓 → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
| 26 |
25
|
cbvrexvw |
⊢ ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) |
| 27 |
|
breq2 |
⊢ ( 0 = if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) → ( ( 𝑓 ‘ 𝑧 ) ≤ 0 ↔ ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
| 28 |
|
breq2 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) = if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) → ( ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ↔ ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
| 29 |
|
id |
⊢ ( ( 𝑓 ‘ 𝑧 ) = 0 → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 30 |
|
0le0 |
⊢ 0 ≤ 0 |
| 31 |
29 30
|
eqbrtrdi |
⊢ ( ( 𝑓 ‘ 𝑧 ) = 0 → ( 𝑓 ‘ 𝑧 ) ≤ 0 ) |
| 32 |
31
|
adantl |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) = 0 ) → ( 𝑓 ‘ 𝑧 ) ≤ 0 ) |
| 33 |
|
rpge0 |
⊢ ( 𝑦 ∈ ℝ+ → 0 ≤ 𝑦 ) |
| 34 |
33
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → 0 ≤ 𝑦 ) |
| 35 |
|
i1ff |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
| 37 |
36
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
| 38 |
|
rpre |
⊢ ( 𝑦 ∈ ℝ+ → 𝑦 ∈ ℝ ) |
| 39 |
38
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 40 |
37 39
|
addge01d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 0 ≤ 𝑦 ↔ ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
| 41 |
34 40
|
mpbid |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ ( 𝑓 ‘ 𝑧 ) = 0 ) → ( 𝑓 ‘ 𝑧 ) ≤ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) |
| 43 |
27 28 32 42
|
ifbothda |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
| 44 |
43
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) |
| 45 |
35
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑓 : ℝ ⟶ ℝ ) |
| 46 |
45
|
ffvelcdmda |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
| 47 |
46
|
rexrd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ* ) |
| 48 |
|
0re |
⊢ 0 ∈ ℝ |
| 49 |
38
|
ad2antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
| 50 |
46 49
|
readdcld |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ∈ ℝ ) |
| 51 |
|
ifcl |
⊢ ( ( 0 ∈ ℝ ∧ ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ∈ ℝ ) → if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ ) |
| 52 |
48 50 51
|
sylancr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ ) |
| 53 |
52
|
rexrd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ* ) |
| 54 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 55 |
|
fss |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐹 : ℝ ⟶ ℝ* ) |
| 56 |
54 55
|
mpan2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 : ℝ ⟶ ℝ* ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 : ℝ ⟶ ℝ* ) |
| 58 |
57
|
ffvelcdmda |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) |
| 59 |
|
xrletr |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ℝ* ∧ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) → ( ( ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∧ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 60 |
47 53 58 59
|
syl3anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑧 ) ≤ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ∧ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 61 |
44 60
|
mpand |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑧 ∈ ℝ ) → ( if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 62 |
61
|
ralimdva |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ℝ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) → ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 63 |
|
reex |
⊢ ℝ ∈ V |
| 64 |
63
|
a1i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ℝ ∈ V ) |
| 65 |
|
eqidd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ) |
| 66 |
|
id |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 67 |
66
|
feqmptd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 = ( 𝑧 ∈ ℝ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝐹 = ( 𝑧 ∈ ℝ ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 69 |
64 52 58 65 68
|
ofrfval2 |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 70 |
35
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑧 ∈ ℝ ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 71 |
70
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → 𝑓 = ( 𝑧 ∈ ℝ ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 72 |
64 46 58 71 68
|
ofrfval2 |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 73 |
62 69 72
|
3imtr4d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑦 ∈ ℝ+ ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹 ) ) |
| 74 |
73
|
rexlimdva |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 → 𝑓 ∘r ≤ 𝐹 ) ) |
| 75 |
74
|
anim1d |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
| 76 |
75
|
reximdva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑓 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑓 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑓 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
| 77 |
26 76
|
biimtrid |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) → ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) ) |
| 78 |
77
|
ss2abdv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ⊆ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ) |
| 79 |
78
|
sseld |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑏 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } → 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ) ) |
| 80 |
|
simp3r |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 = ( ∫1 ‘ 𝑓 ) ) |
| 81 |
9
|
3ad2ant2 |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
| 82 |
80 81
|
eqeltrd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑥 ∈ ℝ* ) |
| 83 |
82
|
rexlimdv3a |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) → 𝑥 ∈ ℝ* ) ) |
| 84 |
83
|
abssdv |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* ) |
| 85 |
|
xrsupss |
⊢ ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* → ∃ 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) ) |
| 86 |
84 85
|
syl |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑎 ∈ ℝ* ( ∀ 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ¬ 𝑎 < 𝑏 ∧ ∀ 𝑏 ∈ ℝ* ( 𝑏 < 𝑎 → ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) ) |
| 87 |
6 86
|
supub |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑏 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } → ¬ sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) < 𝑏 ) ) |
| 88 |
79 87
|
syld |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑏 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } → ¬ sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) < 𝑏 ) ) |
| 89 |
88
|
imp |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } ) → ¬ sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) < 𝑏 ) |
| 90 |
|
supxrlub |
⊢ ( ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } ⊆ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ↔ ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) |
| 91 |
13 90
|
mpan |
⊢ ( 𝑏 ∈ ℝ* → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ↔ ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) |
| 92 |
91
|
adantl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ↔ ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ) ) |
| 93 |
|
simprrr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → 𝑠 = ( ∫1 ‘ 𝑓 ) ) |
| 94 |
93
|
breq2d |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 < 𝑠 ↔ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ) |
| 95 |
|
simplll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 96 |
|
i1f0 |
⊢ ( ℝ × { 0 } ) ∈ dom ∫1 |
| 97 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 98 |
97
|
ne0ii |
⊢ ℝ+ ≠ ∅ |
| 99 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 100 |
|
elxrge0 |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 101 |
99 100
|
sylib |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 102 |
101
|
simprd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 103 |
102
|
ralrimiva |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑧 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 104 |
63
|
a1i |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ℝ ∈ V ) |
| 105 |
|
c0ex |
⊢ 0 ∈ V |
| 106 |
105
|
a1i |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → 0 ∈ V ) |
| 107 |
|
eqidd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑧 ∈ ℝ ↦ 0 ) = ( 𝑧 ∈ ℝ ↦ 0 ) ) |
| 108 |
104 106 99 107 67
|
ofrfval2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 109 |
103 108
|
mpbird |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
| 110 |
109
|
ralrimivw |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∀ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
| 111 |
|
r19.2z |
⊢ ( ( ℝ+ ≠ ∅ ∧ ∀ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
| 112 |
98 110 111
|
sylancr |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) |
| 113 |
|
fveq2 |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ∫1 ‘ 𝑔 ) = ( ∫1 ‘ ( ℝ × { 0 } ) ) ) |
| 114 |
|
itg10 |
⊢ ( ∫1 ‘ ( ℝ × { 0 } ) ) = 0 |
| 115 |
113 114
|
eqtr2di |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → 0 = ( ∫1 ‘ 𝑔 ) ) |
| 116 |
115
|
biantrud |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 117 |
|
fveq1 |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( 𝑔 ‘ 𝑧 ) = ( ( ℝ × { 0 } ) ‘ 𝑧 ) ) |
| 118 |
105
|
fvconst2 |
⊢ ( 𝑧 ∈ ℝ → ( ( ℝ × { 0 } ) ‘ 𝑧 ) = 0 ) |
| 119 |
117 118
|
sylan9eq |
⊢ ( ( 𝑔 = ( ℝ × { 0 } ) ∧ 𝑧 ∈ ℝ ) → ( 𝑔 ‘ 𝑧 ) = 0 ) |
| 120 |
|
iftrue |
⊢ ( ( 𝑔 ‘ 𝑧 ) = 0 → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = 0 ) |
| 121 |
119 120
|
syl |
⊢ ( ( 𝑔 = ( ℝ × { 0 } ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = 0 ) |
| 122 |
121
|
mpteq2dva |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ 0 ) ) |
| 123 |
122
|
breq1d |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) ) |
| 124 |
123
|
rexbidv |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) ) |
| 125 |
116 124
|
bitr3d |
⊢ ( 𝑔 = ( ℝ × { 0 } ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) ) |
| 126 |
125
|
rspcev |
⊢ ( ( ( ℝ × { 0 } ) ∈ dom ∫1 ∧ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ 0 ) ∘r ≤ 𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
| 127 |
96 112 126
|
sylancr |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
| 128 |
|
id |
⊢ ( 𝑏 = -∞ → 𝑏 = -∞ ) |
| 129 |
|
mnflt |
⊢ ( 0 ∈ ℝ → -∞ < 0 ) |
| 130 |
48 129
|
mp1i |
⊢ ( 𝑏 = -∞ → -∞ < 0 ) |
| 131 |
128 130
|
eqbrtrd |
⊢ ( 𝑏 = -∞ → 𝑏 < 0 ) |
| 132 |
|
eqeq1 |
⊢ ( 𝑎 = 0 → ( 𝑎 = ( ∫1 ‘ 𝑔 ) ↔ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
| 133 |
132
|
anbi2d |
⊢ ( 𝑎 = 0 → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 134 |
133
|
rexbidv |
⊢ ( 𝑎 = 0 → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 135 |
|
breq2 |
⊢ ( 𝑎 = 0 → ( 𝑏 < 𝑎 ↔ 𝑏 < 0 ) ) |
| 136 |
134 135
|
anbi12d |
⊢ ( 𝑎 = 0 → ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ↔ ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 0 ) ) ) |
| 137 |
105 136
|
spcev |
⊢ ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 0 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 138 |
127 131 137
|
syl2an |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 = -∞ ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 139 |
95 138
|
sylan |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 = -∞ ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 140 |
|
simp-4r |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → 𝑏 ∈ ℝ* ) |
| 141 |
8
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 142 |
141
|
ad3antlr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 143 |
|
simpllr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝑏 ∈ ℝ* ) |
| 144 |
|
ngtmnft |
⊢ ( 𝑏 ∈ ℝ* → ( 𝑏 = -∞ ↔ ¬ -∞ < 𝑏 ) ) |
| 145 |
144
|
biimprd |
⊢ ( 𝑏 ∈ ℝ* → ( ¬ -∞ < 𝑏 → 𝑏 = -∞ ) ) |
| 146 |
145
|
necon1ad |
⊢ ( 𝑏 ∈ ℝ* → ( 𝑏 ≠ -∞ → -∞ < 𝑏 ) ) |
| 147 |
146
|
imp |
⊢ ( ( 𝑏 ∈ ℝ* ∧ 𝑏 ≠ -∞ ) → -∞ < 𝑏 ) |
| 148 |
143 147
|
sylan |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → -∞ < 𝑏 ) |
| 149 |
|
simpr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → 𝑏 ∈ ℝ* ) |
| 150 |
9
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) |
| 151 |
149 150
|
anim12i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) ) |
| 152 |
|
xrltle |
⊢ ( ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) ) |
| 153 |
152
|
imp |
⊢ ( ( ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ* ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) |
| 154 |
151 153
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) |
| 155 |
154
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) |
| 156 |
|
xrre |
⊢ ( ( ( 𝑏 ∈ ℝ* ∧ ( ∫1 ‘ 𝑓 ) ∈ ℝ ) ∧ ( -∞ < 𝑏 ∧ 𝑏 ≤ ( ∫1 ‘ 𝑓 ) ) ) → 𝑏 ∈ ℝ ) |
| 157 |
140 142 148 155 156
|
syl22anc |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → 𝑏 ∈ ℝ ) |
| 158 |
127
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 0 = ( ∫1 ‘ 𝑔 ) ) ) |
| 159 |
|
simplrl |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → 𝑏 < ( ∫1 ‘ 𝑓 ) ) |
| 160 |
|
simplrl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 𝑓 ∈ dom ∫1 ) |
| 161 |
|
simpl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → 𝑓 ∈ dom ∫1 ) |
| 162 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ dom 𝑓 |
| 163 |
162 35
|
fssdm |
⊢ ( 𝑓 ∈ dom ∫1 → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ ) |
| 164 |
163
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ ) |
| 165 |
|
simpr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) |
| 166 |
|
fdm |
⊢ ( 𝑓 : ℝ ⟶ ℝ → dom 𝑓 = ℝ ) |
| 167 |
166
|
eqcomd |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ℝ = dom 𝑓 ) |
| 168 |
|
ffun |
⊢ ( 𝑓 : ℝ ⟶ ℝ → Fun 𝑓 ) |
| 169 |
|
difpreima |
⊢ ( Fun 𝑓 → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 170 |
168 169
|
syl |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 171 |
|
cnvimarndm |
⊢ ( ◡ 𝑓 “ ran 𝑓 ) = dom 𝑓 |
| 172 |
171
|
difeq1i |
⊢ ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) = ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) |
| 173 |
170 172
|
eqtrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 174 |
167 173
|
difeq12d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( dom 𝑓 ∖ ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 175 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ { 0 } ) ⊆ dom 𝑓 |
| 176 |
|
dfss4 |
⊢ ( ( ◡ 𝑓 “ { 0 } ) ⊆ dom 𝑓 ↔ ( dom 𝑓 ∖ ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) = ( ◡ 𝑓 “ { 0 } ) ) |
| 177 |
175 176
|
mpbi |
⊢ ( dom 𝑓 ∖ ( dom 𝑓 ∖ ( ◡ 𝑓 “ { 0 } ) ) ) = ( ◡ 𝑓 “ { 0 } ) |
| 178 |
174 177
|
eqtrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( ◡ 𝑓 “ { 0 } ) ) |
| 179 |
178
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 180 |
|
ffn |
⊢ ( 𝑓 : ℝ ⟶ ℝ → 𝑓 Fn ℝ ) |
| 181 |
|
fniniseg |
⊢ ( 𝑓 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑓 ‘ 𝑧 ) = 0 ) ) ) |
| 182 |
|
simpr |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( 𝑓 ‘ 𝑧 ) = 0 ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 183 |
181 182
|
biimtrdi |
⊢ ( 𝑓 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 184 |
180 183
|
syl |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 185 |
179 184
|
sylbid |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 186 |
35 185
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 187 |
186
|
imp |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 188 |
187
|
adantlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) ∧ 𝑧 ∈ ( ℝ ∖ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 189 |
161 164 165 188
|
itg10a |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( ∫1 ‘ 𝑓 ) = 0 ) |
| 190 |
160 189
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ( ∫1 ‘ 𝑓 ) = 0 ) |
| 191 |
159 190
|
breqtrd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → 𝑏 < 0 ) |
| 192 |
158 191 137
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = 0 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 193 |
|
simprl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → 𝑓 ∈ dom ∫1 ) |
| 194 |
|
simpr |
⊢ ( ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
| 195 |
193 194
|
anim12i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ) |
| 196 |
63
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ℝ ∈ V ) |
| 197 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑢 ) ∈ V |
| 198 |
197
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑓 ‘ 𝑢 ) ∈ V ) |
| 199 |
|
ovex |
⊢ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ V |
| 200 |
199 105
|
ifex |
⊢ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V |
| 201 |
200
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V ) |
| 202 |
35
|
feqmptd |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 = ( 𝑢 ∈ ℝ ↦ ( 𝑓 ‘ 𝑢 ) ) ) |
| 203 |
202
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 = ( 𝑢 ∈ ℝ ↦ ( 𝑓 ‘ 𝑢 ) ) ) |
| 204 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
| 205 |
196 198 201 203 204
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
| 206 |
|
ovif2 |
⊢ ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑢 ) − 0 ) ) |
| 207 |
171 166
|
eqtrid |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ran 𝑓 ) = ℝ ) |
| 208 |
207
|
difeq1d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) = ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 209 |
170 208
|
eqtrd |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) = ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 210 |
209
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 211 |
35 210
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 212 |
211
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 213 |
|
simpr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → 𝑢 ∈ ℝ ) |
| 214 |
213
|
biantrurd |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 215 |
|
eldif |
⊢ ( 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ↔ ( 𝑢 ∈ ℝ ∧ ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 216 |
214 215
|
bitr4di |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ 𝑢 ∈ ( ℝ ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 217 |
212 216
|
bitr4d |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ¬ 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 218 |
217
|
con2bid |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 219 |
|
fniniseg |
⊢ ( 𝑓 Fn ℝ → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
| 220 |
35 180 219
|
3syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
| 221 |
220
|
ad3antrrr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( 𝑢 ∈ ( ◡ 𝑓 “ { 0 } ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
| 222 |
218 221
|
bitr3d |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) ) ) |
| 223 |
|
oveq1 |
⊢ ( ( 𝑓 ‘ 𝑢 ) = 0 → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = ( 0 − 0 ) ) |
| 224 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 225 |
223 224
|
eqtrdi |
⊢ ( ( 𝑓 ‘ 𝑢 ) = 0 → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) |
| 226 |
225
|
adantl |
⊢ ( ( 𝑢 ∈ ℝ ∧ ( 𝑓 ‘ 𝑢 ) = 0 ) → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) |
| 227 |
222 226
|
biimtrdi |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) ) |
| 228 |
227
|
imp |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) ∧ ¬ 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑢 ) − 0 ) = 0 ) |
| 229 |
228
|
ifeq2da |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑢 ) − 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 230 |
206 229
|
eqtrid |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 231 |
230
|
mpteq2dva |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑢 ) − if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 232 |
205 231
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 233 |
|
simpll |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 ∈ dom ∫1 ) |
| 234 |
199
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ V ) |
| 235 |
|
1ex |
⊢ 1 ∈ V |
| 236 |
235 105
|
ifex |
⊢ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V |
| 237 |
236
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑢 ∈ ℝ ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V ) |
| 238 |
|
fconstmpt |
⊢ ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑢 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
| 239 |
238
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑢 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 240 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) |
| 241 |
196 234 237 239 240
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) |
| 242 |
|
ovif2 |
⊢ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) |
| 243 |
|
resubcl |
⊢ ( ( ( ∫1 ‘ 𝑓 ) ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
| 244 |
8 243
|
sylan |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
| 245 |
244
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
| 246 |
|
2re |
⊢ 2 ∈ ℝ |
| 247 |
|
i1fima |
⊢ ( 𝑓 ∈ dom ∫1 → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ) |
| 248 |
|
mblvol |
⊢ ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 249 |
247 248
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 250 |
|
neldifsn |
⊢ ¬ 0 ∈ ( ran 𝑓 ∖ { 0 } ) |
| 251 |
|
i1fima2 |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ¬ 0 ∈ ( ran 𝑓 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
| 252 |
250 251
|
mpan2 |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
| 253 |
249 252
|
eqeltrrd |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
| 254 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
| 255 |
246 253 254
|
sylancr |
⊢ ( 𝑓 ∈ dom ∫1 → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
| 256 |
255
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
| 257 |
|
2cnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 2 ∈ ℂ ) |
| 258 |
253
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
| 259 |
258
|
recnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℂ ) |
| 260 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 261 |
260
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 2 ≠ 0 ) |
| 262 |
|
simpr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) |
| 263 |
257 259 261 262
|
mulne0d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ≠ 0 ) |
| 264 |
245 256 263
|
redivcld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ ) |
| 265 |
264
|
recnd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
| 266 |
265
|
mulridd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
| 267 |
265
|
mul01d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) = 0 ) |
| 268 |
266 267
|
ifeq12d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
| 269 |
242 268
|
eqtrid |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
| 270 |
269
|
mpteq2dv |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
| 271 |
241 270
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
| 272 |
|
eqid |
⊢ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) |
| 273 |
272
|
i1f1 |
⊢ ( ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
| 274 |
247 252 273
|
syl2anc |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
| 275 |
274
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
| 276 |
275 264
|
i1fmulc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ∈ dom ∫1 ) |
| 277 |
271 276
|
eqeltrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 278 |
|
i1fsub |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
| 279 |
233 277 278
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
| 280 |
232 279
|
eqeltrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 281 |
|
iftrue |
⊢ ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 282 |
|
iftrue |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 283 |
282
|
breq2d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
| 284 |
283 282
|
ifbieq1d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 285 |
|
iftrue |
⊢ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 286 |
284 285
|
sylan9eqr |
⊢ ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 287 |
281 286
|
eqtr4d |
⊢ ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
| 288 |
|
iffalse |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
| 289 |
|
ianor |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∨ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 290 |
283
|
ifbid |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
| 291 |
|
iffalse |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 292 |
290 291
|
sylan9eqr |
⊢ ( ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 293 |
292
|
ex |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
| 294 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
| 295 |
|
eqid |
⊢ 0 = 0 |
| 296 |
|
eqeq1 |
⊢ ( if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) → ( if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ↔ if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
| 297 |
|
eqeq1 |
⊢ ( 0 = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) → ( 0 = 0 ↔ if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) ) |
| 298 |
296 297
|
ifboth |
⊢ ( ( if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ∧ 0 = 0 ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 299 |
294 295 298
|
sylancl |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 300 |
293 299
|
pm2.61d1 |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 301 |
300 299
|
jaoi |
⊢ ( ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∨ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 302 |
289 301
|
sylbi |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) = 0 ) |
| 303 |
288 302
|
eqtr4d |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
| 304 |
287 303
|
pm2.61i |
⊢ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) |
| 305 |
|
eleq1w |
⊢ ( 𝑢 = 𝑧 → ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 306 |
|
fveq2 |
⊢ ( 𝑢 = 𝑧 → ( 𝑓 ‘ 𝑢 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 307 |
306
|
oveq1d |
⊢ ( 𝑢 = 𝑧 → ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 308 |
305 307
|
ifbieq1d |
⊢ ( 𝑢 = 𝑧 → if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 309 |
|
eqid |
⊢ ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 310 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ V |
| 311 |
310 105
|
ifex |
⊢ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V |
| 312 |
308 309 311
|
fvmpt |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 313 |
312
|
breq2d |
⊢ ( 𝑧 ∈ ℝ → ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) ↔ 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 314 |
313 312
|
ifbieq1d |
⊢ ( 𝑧 ∈ ℝ → if ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , 0 ) = if ( 0 ≤ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) , 0 ) ) |
| 315 |
304 314
|
eqtr4id |
⊢ ( 𝑧 ∈ ℝ → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , 0 ) ) |
| 316 |
315
|
mpteq2ia |
⊢ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 0 ≤ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) , 0 ) ) |
| 317 |
316
|
i1fpos |
⊢ ( ( 𝑢 ∈ ℝ ↦ if ( 𝑢 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( 𝑓 ‘ 𝑢 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 318 |
280 317
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 319 |
195 318
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 320 |
195 264
|
sylan |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ ) |
| 321 |
8
|
ad2antrl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 322 |
321 194 243
|
syl2an |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
| 323 |
322
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℝ ) |
| 324 |
255
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
| 325 |
324
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℝ ) |
| 326 |
|
simprl |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 𝑏 < ( ∫1 ‘ 𝑓 ) ) |
| 327 |
|
simprr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 𝑏 ∈ ℝ ) |
| 328 |
141
|
ad2antlr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 329 |
327 328
|
posdifd |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 0 < ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) ) |
| 330 |
326 329
|
mpbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → 0 < ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) |
| 331 |
330
|
adantr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) |
| 332 |
253
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
| 333 |
332
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) |
| 334 |
|
mblss |
⊢ ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol → ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ ) |
| 335 |
|
ovolge0 |
⊢ ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 336 |
247 334 335
|
3syl |
⊢ ( 𝑓 ∈ dom ∫1 → 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 337 |
|
ltlen |
⊢ ( ( 0 ∈ ℝ ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ ( 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) ) |
| 338 |
48 253 337
|
sylancr |
⊢ ( 𝑓 ∈ dom ∫1 → ( 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ ( 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) ) |
| 339 |
338
|
biimprd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( 0 ≤ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 340 |
336 339
|
mpand |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 341 |
340
|
ad2antrl |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 342 |
341
|
imp |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 343 |
342
|
adantlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 344 |
|
2pos |
⊢ 0 < 2 |
| 345 |
|
mulgt0 |
⊢ ( ( ( 2 ∈ ℝ ∧ 0 < 2 ) ∧ ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ∧ 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → 0 < ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 346 |
246 344 345
|
mpanl12 |
⊢ ( ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ∧ 0 < ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → 0 < ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 347 |
333 343 346
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 348 |
323 325 331 347
|
divgt0d |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 0 < ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
| 349 |
320 348
|
elrpd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ+ ) |
| 350 |
|
simprl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑓 ∘r ≤ 𝐹 ) |
| 351 |
350
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 ∘r ≤ 𝐹 ) |
| 352 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → 𝐹 Fn ℝ ) |
| 353 |
35 180
|
syl |
⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 Fn ℝ ) |
| 354 |
353
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑓 Fn ℝ ) |
| 355 |
|
simpr |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → 𝑓 Fn ℝ ) |
| 356 |
|
simpl |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → 𝐹 Fn ℝ ) |
| 357 |
63
|
a1i |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → ℝ ∈ V ) |
| 358 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 359 |
|
eqidd |
⊢ ( ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 360 |
|
eqidd |
⊢ ( ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 361 |
355 356 357 357 358 359 360
|
ofrfval |
⊢ ( ( 𝐹 Fn ℝ ∧ 𝑓 Fn ℝ ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 362 |
352 354 361
|
syl2an |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 363 |
362
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 364 |
|
simpl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → 𝑓 ∈ dom ∫1 ) |
| 365 |
364
|
anim2i |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ) |
| 366 |
365 194
|
anim12i |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ) |
| 367 |
|
breq1 |
⊢ ( 0 = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( 0 ≤ ( 𝐹 ‘ 𝑧 ) ↔ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 368 |
|
breq1 |
⊢ ( ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 369 |
|
simplll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 370 |
369
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] +∞ ) ) |
| 371 |
370 100
|
sylib |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 372 |
371
|
simprd |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 373 |
372
|
ad2antrr |
⊢ ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) → 0 ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 374 |
|
oveq1 |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 375 |
374
|
breq1d |
⊢ ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 376 |
|
oveq1 |
⊢ ( 0 = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 377 |
376
|
breq1d |
⊢ ( 0 = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) → ( ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 378 |
35
|
ad3antlr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 379 |
378
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
| 380 |
379
|
recnd |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℂ ) |
| 381 |
244
|
recnd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℂ ) |
| 382 |
381
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ∈ ℂ ) |
| 383 |
255
|
recnd |
⊢ ( 𝑓 ∈ dom ∫1 → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℂ ) |
| 384 |
383
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ∈ ℂ ) |
| 385 |
382 384 263
|
divcld |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
| 386 |
385
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
| 387 |
386
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℂ ) |
| 388 |
380 387
|
npcand |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( 𝑓 ‘ 𝑧 ) ) |
| 389 |
388
|
adantr |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( 𝑓 ‘ 𝑧 ) ) |
| 390 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 391 |
389 390
|
eqbrtrd |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 392 |
391
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ∧ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 393 |
288
|
pm2.24d |
⊢ ( ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 394 |
393
|
impcom |
⊢ ( ( ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ∧ ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 395 |
394
|
adantll |
⊢ ( ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ∧ ¬ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) → ( 0 + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 396 |
375 377 392 395
|
ifbothda |
⊢ ( ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) ∧ ¬ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) → ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 397 |
367 368 373 396
|
ifbothda |
⊢ ( ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 398 |
397
|
ex |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑓 ∈ dom ∫1 ) ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 399 |
366 398
|
sylanl1 |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 400 |
399
|
ralimdva |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∀ 𝑧 ∈ ℝ ( 𝑓 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑧 ) → ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 401 |
363 400
|
sylbid |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘r ≤ 𝐹 → ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 402 |
351 401
|
mpd |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) |
| 403 |
|
ovex |
⊢ ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ V |
| 404 |
105 403
|
ifex |
⊢ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ∈ V |
| 405 |
404
|
a1i |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑧 ∈ ℝ ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ∈ V ) |
| 406 |
|
eqidd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ) |
| 407 |
104 405 99 406 67
|
ofrfval2 |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 408 |
407
|
ad3antrrr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ↔ ∀ 𝑧 ∈ ℝ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ≤ ( 𝐹 ‘ 𝑧 ) ) ) |
| 409 |
402 408
|
mpbird |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ) |
| 410 |
|
oveq2 |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 411 |
410
|
ifeq2d |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
| 412 |
411
|
mpteq2dv |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ) |
| 413 |
412
|
breq1d |
⊢ ( 𝑦 = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ) ) |
| 414 |
413
|
rspcev |
⊢ ( ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ+ ∧ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) ∘r ≤ 𝐹 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) |
| 415 |
349 409 414
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) |
| 416 |
|
fveq2 |
⊢ ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = 𝑔 → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) |
| 417 |
416
|
eqcoms |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) |
| 418 |
417
|
biantrud |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 419 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 420 |
419
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 421 |
|
fveq1 |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( 𝑔 ‘ 𝑧 ) = ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) ) |
| 422 |
310 105
|
ifex |
⊢ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V |
| 423 |
|
eqid |
⊢ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 424 |
423
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ ℝ ∧ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 425 |
422 424
|
mpan2 |
⊢ ( 𝑧 ∈ ℝ → ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ‘ 𝑧 ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 426 |
421 425
|
sylan9eq |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑔 ‘ 𝑧 ) = if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 427 |
426
|
eqeq1d |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑔 ‘ 𝑧 ) = 0 ↔ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) ) |
| 428 |
426
|
oveq1d |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) = ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) |
| 429 |
427 428
|
ifbieq2d |
⊢ ( ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∧ 𝑧 ∈ ℝ ) → if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) = if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) |
| 430 |
420 429
|
mpteq2da |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ) |
| 431 |
430
|
breq1d |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
| 432 |
431
|
rexbidv |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
| 433 |
418 432
|
bitr3d |
⊢ ( 𝑔 = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) ) |
| 434 |
433
|
rspcev |
⊢ ( ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 , 0 , ( if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) |
| 435 |
319 415 434
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) |
| 436 |
|
simplrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 ∈ ℝ ) |
| 437 |
199
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ V ) |
| 438 |
235 105
|
ifex |
⊢ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V |
| 439 |
438
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ∈ V ) |
| 440 |
|
fconstmpt |
⊢ ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑧 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
| 441 |
440
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) = ( 𝑧 ∈ ℝ ↦ ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 442 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) |
| 443 |
196 437 439 441 442
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) |
| 444 |
|
ovif2 |
⊢ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) |
| 445 |
266 267
|
ifeq12d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 1 ) , ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · 0 ) ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
| 446 |
444 445
|
eqtrid |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) |
| 447 |
446
|
mpteq2dv |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
| 448 |
443 447
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
| 449 |
|
eqid |
⊢ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) |
| 450 |
449
|
i1f1 |
⊢ ( ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
| 451 |
247 252 450
|
syl2anc |
⊢ ( 𝑓 ∈ dom ∫1 → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
| 452 |
451
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ∈ dom ∫1 ) |
| 453 |
452 264
|
i1fmulc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ∈ dom ∫1 ) |
| 454 |
448 453
|
eqeltrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 455 |
|
i1fsub |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
| 456 |
233 454 455
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
| 457 |
|
itg1cl |
⊢ ( ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 458 |
456 457
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 459 |
458
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ∈ ℝ ) |
| 460 |
318
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) |
| 461 |
|
itg1cl |
⊢ ( ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 462 |
460 461
|
syl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 463 |
|
simplrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ 𝑓 ) ) |
| 464 |
|
simpr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → 𝑏 ∈ ℝ ) |
| 465 |
8
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ∫1 ‘ 𝑓 ) ∈ ℝ ) |
| 466 |
97
|
a1i |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → 2 ∈ ℝ+ ) |
| 467 |
464 465 466
|
ltdiv1d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ ( 𝑏 / 2 ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
| 468 |
|
recn |
⊢ ( 𝑏 ∈ ℝ → 𝑏 ∈ ℂ ) |
| 469 |
468
|
2halvesd |
⊢ ( 𝑏 ∈ ℝ → ( ( 𝑏 / 2 ) + ( 𝑏 / 2 ) ) = 𝑏 ) |
| 470 |
469
|
oveq1d |
⊢ ( 𝑏 ∈ ℝ → ( ( ( 𝑏 / 2 ) + ( 𝑏 / 2 ) ) − ( 𝑏 / 2 ) ) = ( 𝑏 − ( 𝑏 / 2 ) ) ) |
| 471 |
468
|
halfcld |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 / 2 ) ∈ ℂ ) |
| 472 |
471 471
|
pncand |
⊢ ( 𝑏 ∈ ℝ → ( ( ( 𝑏 / 2 ) + ( 𝑏 / 2 ) ) − ( 𝑏 / 2 ) ) = ( 𝑏 / 2 ) ) |
| 473 |
470 472
|
eqtr3d |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 − ( 𝑏 / 2 ) ) = ( 𝑏 / 2 ) ) |
| 474 |
473
|
breq1d |
⊢ ( 𝑏 ∈ ℝ → ( ( 𝑏 − ( 𝑏 / 2 ) ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ↔ ( 𝑏 / 2 ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
| 475 |
474
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( 𝑏 − ( 𝑏 / 2 ) ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ↔ ( 𝑏 / 2 ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
| 476 |
|
rehalfcl |
⊢ ( 𝑏 ∈ ℝ → ( 𝑏 / 2 ) ∈ ℝ ) |
| 477 |
476
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 / 2 ) ∈ ℝ ) |
| 478 |
8
|
rehalfcld |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℝ ) |
| 479 |
478
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℝ ) |
| 480 |
464 477 479
|
ltsubaddd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( 𝑏 − ( 𝑏 / 2 ) ) < ( ( ∫1 ‘ 𝑓 ) / 2 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
| 481 |
467 475 480
|
3bitr2d |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
| 482 |
481
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
| 483 |
482
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) ↔ 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) ) |
| 484 |
463 483
|
mpbid |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
| 485 |
452 264
|
itg1mulc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) ) |
| 486 |
448
|
fveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( ( ℝ × { ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) } ) ∘f · ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
| 487 |
449
|
itg11 |
⊢ ( ( ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ∈ dom vol ∧ ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℝ ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 488 |
247 252 487
|
syl2anc |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) = ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 489 |
488
|
oveq2d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 490 |
489
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 491 |
252
|
recnd |
⊢ ( 𝑓 ∈ dom ∫1 → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℂ ) |
| 492 |
491
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ∈ ℂ ) |
| 493 |
265 492
|
mulcomd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) = ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 494 |
249
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) = ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) |
| 495 |
494
|
oveq1d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) = ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) ) |
| 496 |
259 382
|
mulcomd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 497 |
495 496
|
eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 498 |
497
|
oveq1d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) = ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
| 499 |
492 382 384 263
|
divassd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) = ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 500 |
382 257 259 261 262
|
divcan5rd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
| 501 |
498 499 500
|
3eqtr3d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( vol ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) · ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
| 502 |
490 493 501
|
3eqtrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) · ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , 1 , 0 ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
| 503 |
485 486 502
|
3eqtr3d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) |
| 504 |
503
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) ) |
| 505 |
|
itg1sub |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
| 506 |
233 454 505
|
syl2anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
| 507 |
8
|
recnd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
| 508 |
507
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
| 509 |
468
|
ad2antlr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 ∈ ℂ ) |
| 510 |
508 509 257 261
|
divsubdird |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) |
| 511 |
510
|
oveq2d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) ) |
| 512 |
507
|
adantr |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ∫1 ‘ 𝑓 ) ∈ ℂ ) |
| 513 |
512
|
halfcld |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℂ ) |
| 514 |
471
|
adantl |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( 𝑏 / 2 ) ∈ ℂ ) |
| 515 |
512 513 514
|
subsubd |
⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) → ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) ) |
| 516 |
515
|
adantr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) / 2 ) − ( 𝑏 / 2 ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) ) |
| 517 |
507
|
2halvesd |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ∫1 ‘ 𝑓 ) ) |
| 518 |
517
|
oveq1d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( ( ∫1 ‘ 𝑓 ) / 2 ) ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) ) |
| 519 |
507
|
halfcld |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ∫1 ‘ 𝑓 ) / 2 ) ∈ ℂ ) |
| 520 |
519 519
|
pncand |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( ( ∫1 ‘ 𝑓 ) / 2 ) ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) / 2 ) ) |
| 521 |
518 520
|
eqtr3d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) / 2 ) ) |
| 522 |
521
|
oveq1d |
⊢ ( 𝑓 ∈ dom ∫1 → ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
| 523 |
522
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) − ( ( ∫1 ‘ 𝑓 ) / 2 ) ) + ( 𝑏 / 2 ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
| 524 |
511 516 523
|
3eqtrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) = ( ( ∫1 ‘ 𝑓 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / 2 ) ) ) |
| 525 |
504 506 524
|
3eqtr4d |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
| 526 |
525
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) = ( ( ( ∫1 ‘ 𝑓 ) / 2 ) + ( 𝑏 / 2 ) ) ) |
| 527 |
484 526
|
breqtrrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ) |
| 528 |
456
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ) |
| 529 |
|
id |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) |
| 530 |
529
|
adantlrl |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ) |
| 531 |
233 36
|
sylan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ ℝ ) |
| 532 |
264
|
adantr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ∈ ℝ ) |
| 533 |
531 532
|
resubcld |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ ℝ ) |
| 534 |
533
|
leidd |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 535 |
534
|
adantr |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 536 |
285
|
breq2d |
⊢ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
| 537 |
536
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
| 538 |
535 537
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 539 |
533
|
adantr |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∈ ℝ ) |
| 540 |
48
|
a1i |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → 0 ∈ ℝ ) |
| 541 |
48
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → 0 ∈ ℝ ) |
| 542 |
533 541
|
ltnled |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) < 0 ↔ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
| 543 |
542
|
biimpar |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) < 0 ) |
| 544 |
539 540 543
|
ltled |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ 0 ) |
| 545 |
|
iffalse |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
| 546 |
545
|
breq2d |
⊢ ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ 0 ) ) |
| 547 |
546
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ 0 ) ) |
| 548 |
544 547
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 549 |
538 548
|
pm2.61dan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ 𝑏 ∈ ℝ ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 550 |
530 549
|
sylan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 551 |
550
|
adantr |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 552 |
|
iftrue |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) = ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) |
| 553 |
552
|
oveq2d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) |
| 554 |
|
iba |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ↔ ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) |
| 555 |
554
|
bicomd |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ↔ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ) ) |
| 556 |
555
|
ifbid |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 557 |
553 556
|
breq12d |
⊢ ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 558 |
557
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ≤ if ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 559 |
551 558
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 560 |
35
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 : ℝ ⟶ ℝ ) |
| 561 |
170
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ 𝑧 ∈ ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 562 |
|
eldif |
⊢ ( 𝑧 ∈ ( ( ◡ 𝑓 “ ran 𝑓 ) ∖ ( ◡ 𝑓 “ { 0 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 563 |
561 562
|
bitrdi |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 564 |
563
|
notbid |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 565 |
564
|
adantr |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ↔ ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) ) |
| 566 |
|
pm4.53 |
⊢ ( ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ↔ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∨ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) ) |
| 567 |
207
|
eleq2d |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ↔ 𝑧 ∈ ℝ ) ) |
| 568 |
567
|
biimpar |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ) |
| 569 |
568
|
pm2.24d |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 570 |
181
|
simplbda |
⊢ ( ( 𝑓 Fn ℝ ∧ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 571 |
570
|
ex |
⊢ ( 𝑓 Fn ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 572 |
180 571
|
syl |
⊢ ( 𝑓 : ℝ ⟶ ℝ → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 573 |
572
|
adantr |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 574 |
569 573
|
jaod |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∨ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 575 |
566 574
|
biimtrid |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ ( 𝑧 ∈ ( ◡ 𝑓 “ ran 𝑓 ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 576 |
565 575
|
sylbid |
⊢ ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) → ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) ) |
| 577 |
576
|
imp |
⊢ ( ( ( 𝑓 : ℝ ⟶ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 578 |
560 577
|
sylanl1 |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( 𝑓 ‘ 𝑧 ) = 0 ) |
| 579 |
578
|
oveq1d |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − 0 ) = ( 0 − 0 ) ) |
| 580 |
579 224
|
eqtrdi |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − 0 ) = 0 ) |
| 581 |
580 30
|
eqbrtrdi |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − 0 ) ≤ 0 ) |
| 582 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) = 0 ) |
| 583 |
582
|
oveq2d |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( ( 𝑓 ‘ 𝑧 ) − 0 ) ) |
| 584 |
289 288
|
sylbir |
⊢ ( ( ¬ 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∨ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
| 585 |
584
|
olcs |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) = 0 ) |
| 586 |
583 585
|
breq12d |
⊢ ( ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − 0 ) ≤ 0 ) ) |
| 587 |
586
|
adantl |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ↔ ( ( 𝑓 ‘ 𝑧 ) − 0 ) ≤ 0 ) ) |
| 588 |
581 587
|
mpbird |
⊢ ( ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) ∧ ¬ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 589 |
559 588
|
pm2.61dan |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 590 |
589
|
ralrimiva |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∀ 𝑧 ∈ ℝ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) |
| 591 |
63
|
a1i |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ℝ ∈ V ) |
| 592 |
|
ovex |
⊢ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ V |
| 593 |
592
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ∈ V ) |
| 594 |
422
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ∈ V ) |
| 595 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑧 ) ∈ V |
| 596 |
595
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → ( 𝑓 ‘ 𝑧 ) ∈ V ) |
| 597 |
199 105
|
ifex |
⊢ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V |
| 598 |
597
|
a1i |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) ∧ 𝑧 ∈ ℝ ) → if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ∈ V ) |
| 599 |
70
|
ad2antrr |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑓 = ( 𝑧 ∈ ℝ ↦ ( 𝑓 ‘ 𝑧 ) ) ) |
| 600 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) |
| 601 |
591 596 598 599 600
|
offval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) = ( 𝑧 ∈ ℝ ↦ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) |
| 602 |
|
eqidd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) = ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 603 |
591 593 594 601 602
|
ofrfval2 |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ↔ ∀ 𝑧 ∈ ℝ ( ( 𝑓 ‘ 𝑧 ) − if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ≤ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 604 |
590 603
|
mpbird |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) |
| 605 |
|
itg1le |
⊢ ( ( ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∈ dom ∫1 ∧ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ∈ dom ∫1 ∧ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ∘r ≤ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ≤ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
| 606 |
528 460 604 605
|
syl3anc |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ( ∫1 ‘ ( 𝑓 ∘f − ( 𝑧 ∈ ℝ ↦ if ( 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) , ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) , 0 ) ) ) ) ≤ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
| 607 |
436 459 462 527 606
|
ltletrd |
⊢ ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
| 608 |
607
|
adantllr |
⊢ ( ( ( ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
| 609 |
608
|
adantlll |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) |
| 610 |
|
fvex |
⊢ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ∈ V |
| 611 |
|
eqeq1 |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( 𝑎 = ( ∫1 ‘ 𝑔 ) ↔ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) |
| 612 |
611
|
anbi2d |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 613 |
612
|
rexbidv |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 614 |
|
breq2 |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( 𝑏 < 𝑎 ↔ 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) ) |
| 615 |
613 614
|
anbi12d |
⊢ ( 𝑎 = ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) → ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ↔ ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) ) ) |
| 616 |
610 615
|
spcev |
⊢ ( ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < ( ∫1 ‘ ( 𝑧 ∈ ℝ ↦ if ( ( 0 ≤ ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) ∧ 𝑧 ∈ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) , ( ( 𝑓 ‘ 𝑧 ) − ( ( ( ∫1 ‘ 𝑓 ) − 𝑏 ) / ( 2 · ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ) ) ) , 0 ) ) ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 617 |
435 609 616
|
syl2anc |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) ∧ ( vol* ‘ ( ◡ 𝑓 “ ( ran 𝑓 ∖ { 0 } ) ) ) ≠ 0 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 618 |
192 617
|
pm2.61dane |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ ( 𝑏 < ( ∫1 ‘ 𝑓 ) ∧ 𝑏 ∈ ℝ ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 619 |
618
|
expr |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → ( 𝑏 ∈ ℝ → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 620 |
619
|
adantllr |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → ( 𝑏 ∈ ℝ → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 621 |
620
|
adantr |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → ( 𝑏 ∈ ℝ → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 622 |
157 621
|
mpd |
⊢ ( ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 ≠ -∞ ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 623 |
139 622
|
pm2.61dane |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 624 |
623
|
ex |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 < ( ∫1 ‘ 𝑓 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 625 |
94 624
|
sylbid |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ( 𝑏 < 𝑠 → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 626 |
625
|
imp |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) ∧ 𝑏 < 𝑠 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 627 |
626
|
an32s |
⊢ ( ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ 𝑏 < 𝑠 ) ∧ ( 𝑓 ∈ dom ∫1 ∧ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 628 |
627
|
rexlimdvaa |
⊢ ( ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) ∧ 𝑏 < 𝑠 ) → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 629 |
628
|
expimpd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ( 𝑏 < 𝑠 ∧ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 630 |
629
|
ancomsd |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 < 𝑠 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 631 |
630
|
exlimdv |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ∃ 𝑠 ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 < 𝑠 ) → ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) ) |
| 632 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 = ( ∫1 ‘ 𝑓 ) ↔ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) |
| 633 |
632
|
anbi2d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ↔ ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) |
| 634 |
633
|
rexbidv |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) ↔ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ) ) |
| 635 |
634
|
rexab |
⊢ ( ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 ↔ ∃ 𝑠 ( ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑠 = ( ∫1 ‘ 𝑓 ) ) ∧ 𝑏 < 𝑠 ) ) |
| 636 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = ( ∫1 ‘ 𝑔 ) ↔ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ) |
| 637 |
636
|
anbi2d |
⊢ ( 𝑥 = 𝑎 → ( ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 638 |
637
|
rexbidv |
⊢ ( 𝑥 = 𝑎 → ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) ↔ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ) ) |
| 639 |
638
|
rexab |
⊢ ( ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ↔ ∃ 𝑎 ( ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑎 = ( ∫1 ‘ 𝑔 ) ) ∧ 𝑏 < 𝑎 ) ) |
| 640 |
631 635 639
|
3imtr4g |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( ∃ 𝑠 ∈ { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } 𝑏 < 𝑠 → ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ) ) |
| 641 |
92 640
|
sylbid |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ 𝑏 ∈ ℝ* ) → ( 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) → ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ) ) |
| 642 |
641
|
impr |
⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑏 ∈ ℝ* ∧ 𝑏 < sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) ) → ∃ 𝑎 ∈ { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } 𝑏 < 𝑎 ) |
| 643 |
6 15 89 642
|
eqsupd |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → sup ( { 𝑥 ∣ ∃ 𝑔 ∈ dom ∫1 ( ∃ 𝑦 ∈ ℝ+ ( 𝑧 ∈ ℝ ↦ if ( ( 𝑔 ‘ 𝑧 ) = 0 , 0 , ( ( 𝑔 ‘ 𝑧 ) + 𝑦 ) ) ) ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑔 ) ) } , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) |
| 644 |
4 643
|
eqtrid |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → sup ( 𝐿 , ℝ* , < ) = sup ( { 𝑥 ∣ ∃ 𝑓 ∈ dom ∫1 ( 𝑓 ∘r ≤ 𝐹 ∧ 𝑥 = ( ∫1 ‘ 𝑓 ) ) } , ℝ* , < ) ) |
| 645 |
3 644
|
eqtr4d |
⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) → ( ∫2 ‘ 𝐹 ) = sup ( 𝐿 , ℝ* , < ) ) |