| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → 𝐹 ∈ dom ∫1 ) |
| 2 |
|
0ss |
⊢ ∅ ⊆ ℝ |
| 3 |
2
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ∅ ⊆ ℝ ) |
| 4 |
|
ovol0 |
⊢ ( vol* ‘ ∅ ) = 0 |
| 5 |
4
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( vol* ‘ ∅ ) = 0 ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → 𝐺 ∈ dom ∫1 ) |
| 7 |
|
simpl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 ∈ dom ∫1 ) |
| 8 |
|
i1ff |
⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) |
| 9 |
|
ffn |
⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) |
| 10 |
7 8 9
|
3syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐹 Fn ℝ ) |
| 11 |
|
simpr |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 ∈ dom ∫1 ) |
| 12 |
|
i1ff |
⊢ ( 𝐺 ∈ dom ∫1 → 𝐺 : ℝ ⟶ ℝ ) |
| 13 |
|
ffn |
⊢ ( 𝐺 : ℝ ⟶ ℝ → 𝐺 Fn ℝ ) |
| 14 |
11 12 13
|
3syl |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → 𝐺 Fn ℝ ) |
| 15 |
|
reex |
⊢ ℝ ∈ V |
| 16 |
15
|
a1i |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ℝ ∈ V ) |
| 17 |
|
inidm |
⊢ ( ℝ ∩ ℝ ) = ℝ |
| 18 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 19 |
|
eqidd |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝑥 ∈ ℝ ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 20 |
10 14 16 16 17 18 19
|
ofrval |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) ∧ 𝐹 ∘r ≤ 𝐺 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 21 |
20
|
3exp |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ) → ( 𝐹 ∘r ≤ 𝐺 → ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 22 |
21
|
3impia |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( 𝑥 ∈ ℝ → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) ) |
| 23 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℝ ∖ ∅ ) → 𝑥 ∈ ℝ ) |
| 24 |
22 23
|
impel |
⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) ∧ 𝑥 ∈ ( ℝ ∖ ∅ ) ) → ( 𝐹 ‘ 𝑥 ) ≤ ( 𝐺 ‘ 𝑥 ) ) |
| 25 |
1 3 5 6 24
|
itg1lea |
⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝐺 ∈ dom ∫1 ∧ 𝐹 ∘r ≤ 𝐺 ) → ( ∫1 ‘ 𝐹 ) ≤ ( ∫1 ‘ 𝐺 ) ) |