Metamath Proof Explorer


Theorem dvtanlem

Description: Lemma for dvtan - the domain of the tangent is open. (Contributed by Brendan Leahy, 8-Aug-2018) (Proof shortened by OpenAI, 3-Jul-2020)

Ref Expression
Assertion dvtanlem cos -1 0 TopOpen fld

Proof

Step Hyp Ref Expression
1 coscn cos : cn
2 eqid TopOpen fld = TopOpen fld
3 2 cncfcn1 cn = TopOpen fld Cn TopOpen fld
4 1 3 eleqtri cos TopOpen fld Cn TopOpen fld
5 2 cnfldhaus TopOpen fld Haus
6 0cn 0
7 2 cnfldtopon TopOpen fld TopOn
8 7 toponunii = TopOpen fld
9 8 sncld TopOpen fld Haus 0 0 Clsd TopOpen fld
10 5 6 9 mp2an 0 Clsd TopOpen fld
11 8 cldopn 0 Clsd TopOpen fld 0 TopOpen fld
12 10 11 ax-mp 0 TopOpen fld
13 cnima cos TopOpen fld Cn TopOpen fld 0 TopOpen fld cos -1 0 TopOpen fld
14 4 12 13 mp2an cos -1 0 TopOpen fld