| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
|
| 2 |
|
ibladdnc.2 |
|
| 3 |
|
ibladdnc.3 |
|
| 4 |
|
ibladdnc.4 |
|
| 5 |
|
ibladdnc.m |
|
| 6 |
|
iblmbf |
|
| 7 |
2 6
|
syl |
|
| 8 |
7 1
|
mbfmptcl |
|
| 9 |
|
iblmbf |
|
| 10 |
4 9
|
syl |
|
| 11 |
10 3
|
mbfmptcl |
|
| 12 |
8 11
|
readdd |
|
| 13 |
12
|
itgeq2dv |
|
| 14 |
8
|
recld |
|
| 15 |
8
|
iblcn |
|
| 16 |
2 15
|
mpbid |
|
| 17 |
16
|
simpld |
|
| 18 |
11
|
recld |
|
| 19 |
11
|
iblcn |
|
| 20 |
4 19
|
mpbid |
|
| 21 |
20
|
simpld |
|
| 22 |
8 11
|
addcld |
|
| 23 |
|
eqidd |
|
| 24 |
|
ref |
|
| 25 |
24
|
a1i |
|
| 26 |
25
|
feqmptd |
|
| 27 |
|
fveq2 |
|
| 28 |
22 23 26 27
|
fmptco |
|
| 29 |
12
|
mpteq2dva |
|
| 30 |
28 29
|
eqtrd |
|
| 31 |
22
|
fmpttd |
|
| 32 |
|
ismbfcn |
|
| 33 |
31 32
|
syl |
|
| 34 |
5 33
|
mpbid |
|
| 35 |
34
|
simpld |
|
| 36 |
30 35
|
eqeltrrd |
|
| 37 |
14 17 18 21 36 14 18
|
itgaddnclem2 |
|
| 38 |
13 37
|
eqtrd |
|
| 39 |
8 11
|
imaddd |
|
| 40 |
39
|
itgeq2dv |
|
| 41 |
8
|
imcld |
|
| 42 |
16
|
simprd |
|
| 43 |
11
|
imcld |
|
| 44 |
20
|
simprd |
|
| 45 |
|
imf |
|
| 46 |
45
|
a1i |
|
| 47 |
46
|
feqmptd |
|
| 48 |
|
fveq2 |
|
| 49 |
22 23 47 48
|
fmptco |
|
| 50 |
39
|
mpteq2dva |
|
| 51 |
49 50
|
eqtrd |
|
| 52 |
34
|
simprd |
|
| 53 |
51 52
|
eqeltrrd |
|
| 54 |
41 42 43 44 53 41 43
|
itgaddnclem2 |
|
| 55 |
40 54
|
eqtrd |
|
| 56 |
55
|
oveq2d |
|
| 57 |
|
ax-icn |
|
| 58 |
57
|
a1i |
|
| 59 |
41 42
|
itgcl |
|
| 60 |
43 44
|
itgcl |
|
| 61 |
58 59 60
|
adddid |
|
| 62 |
56 61
|
eqtrd |
|
| 63 |
38 62
|
oveq12d |
|
| 64 |
14 17
|
itgcl |
|
| 65 |
18 21
|
itgcl |
|
| 66 |
|
mulcl |
|
| 67 |
57 59 66
|
sylancr |
|
| 68 |
|
mulcl |
|
| 69 |
57 60 68
|
sylancr |
|
| 70 |
64 65 67 69
|
add4d |
|
| 71 |
63 70
|
eqtrd |
|
| 72 |
|
ovexd |
|
| 73 |
1 2 3 4 5
|
ibladdnc |
|
| 74 |
72 73
|
itgcnval |
|
| 75 |
1 2
|
itgcnval |
|
| 76 |
3 4
|
itgcnval |
|
| 77 |
75 76
|
oveq12d |
|
| 78 |
71 74 77
|
3eqtr4d |
|