Step |
Hyp |
Ref |
Expression |
1 |
|
ibladdnc.1 |
|
2 |
|
ibladdnc.2 |
|
3 |
|
ibladdnc.3 |
|
4 |
|
ibladdnc.4 |
|
5 |
|
ibladdnc.m |
|
6 |
|
iblmbf |
|
7 |
2 6
|
syl |
|
8 |
7 1
|
mbfmptcl |
|
9 |
|
iblmbf |
|
10 |
4 9
|
syl |
|
11 |
10 3
|
mbfmptcl |
|
12 |
8 11
|
readdd |
|
13 |
12
|
itgeq2dv |
|
14 |
8
|
recld |
|
15 |
8
|
iblcn |
|
16 |
2 15
|
mpbid |
|
17 |
16
|
simpld |
|
18 |
11
|
recld |
|
19 |
11
|
iblcn |
|
20 |
4 19
|
mpbid |
|
21 |
20
|
simpld |
|
22 |
8 11
|
addcld |
|
23 |
|
eqidd |
|
24 |
|
ref |
|
25 |
24
|
a1i |
|
26 |
25
|
feqmptd |
|
27 |
|
fveq2 |
|
28 |
22 23 26 27
|
fmptco |
|
29 |
12
|
mpteq2dva |
|
30 |
28 29
|
eqtrd |
|
31 |
22
|
fmpttd |
|
32 |
|
ismbfcn |
|
33 |
31 32
|
syl |
|
34 |
5 33
|
mpbid |
|
35 |
34
|
simpld |
|
36 |
30 35
|
eqeltrrd |
|
37 |
14 17 18 21 36 14 18
|
itgaddnclem2 |
|
38 |
13 37
|
eqtrd |
|
39 |
8 11
|
imaddd |
|
40 |
39
|
itgeq2dv |
|
41 |
8
|
imcld |
|
42 |
16
|
simprd |
|
43 |
11
|
imcld |
|
44 |
20
|
simprd |
|
45 |
|
imf |
|
46 |
45
|
a1i |
|
47 |
46
|
feqmptd |
|
48 |
|
fveq2 |
|
49 |
22 23 47 48
|
fmptco |
|
50 |
39
|
mpteq2dva |
|
51 |
49 50
|
eqtrd |
|
52 |
34
|
simprd |
|
53 |
51 52
|
eqeltrrd |
|
54 |
41 42 43 44 53 41 43
|
itgaddnclem2 |
|
55 |
40 54
|
eqtrd |
|
56 |
55
|
oveq2d |
|
57 |
|
ax-icn |
|
58 |
57
|
a1i |
|
59 |
41 42
|
itgcl |
|
60 |
43 44
|
itgcl |
|
61 |
58 59 60
|
adddid |
|
62 |
56 61
|
eqtrd |
|
63 |
38 62
|
oveq12d |
|
64 |
14 17
|
itgcl |
|
65 |
18 21
|
itgcl |
|
66 |
|
mulcl |
|
67 |
57 59 66
|
sylancr |
|
68 |
|
mulcl |
|
69 |
57 60 68
|
sylancr |
|
70 |
64 65 67 69
|
add4d |
|
71 |
63 70
|
eqtrd |
|
72 |
|
ovexd |
|
73 |
1 2 3 4 5
|
ibladdnc |
|
74 |
72 73
|
itgcnval |
|
75 |
1 2
|
itgcnval |
|
76 |
3 4
|
itgcnval |
|
77 |
75 76
|
oveq12d |
|
78 |
71 74 77
|
3eqtr4d |
|