Metamath Proof Explorer


Theorem iblsubnc

Description: Choice-free analogue of iblsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φ x A B V
ibladdnc.2 φ x A B 𝐿 1
ibladdnc.3 φ x A C V
ibladdnc.4 φ x A C 𝐿 1
iblsubnc.m φ x A B C MblFn
Assertion iblsubnc φ x A B C 𝐿 1

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φ x A B V
2 ibladdnc.2 φ x A B 𝐿 1
3 ibladdnc.3 φ x A C V
4 ibladdnc.4 φ x A C 𝐿 1
5 iblsubnc.m φ x A B C MblFn
6 iblmbf x A B 𝐿 1 x A B MblFn
7 2 6 syl φ x A B MblFn
8 7 1 mbfmptcl φ x A B
9 iblmbf x A C 𝐿 1 x A C MblFn
10 4 9 syl φ x A C MblFn
11 10 3 mbfmptcl φ x A C
12 8 11 negsubd φ x A B + C = B C
13 12 mpteq2dva φ x A B + C = x A B C
14 11 negcld φ x A C
15 3 4 iblneg φ x A C 𝐿 1
16 13 5 eqeltrd φ x A B + C MblFn
17 8 2 14 15 16 ibladdnc φ x A B + C 𝐿 1
18 13 17 eqeltrrd φ x A B C 𝐿 1