Metamath Proof Explorer


Theorem itgsubnc

Description: Choice-free analogue of itgsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φ x A B V
ibladdnc.2 φ x A B 𝐿 1
ibladdnc.3 φ x A C V
ibladdnc.4 φ x A C 𝐿 1
iblsubnc.m φ x A B C MblFn
Assertion itgsubnc φ A B C dx = A B dx A C dx

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φ x A B V
2 ibladdnc.2 φ x A B 𝐿 1
3 ibladdnc.3 φ x A C V
4 ibladdnc.4 φ x A C 𝐿 1
5 iblsubnc.m φ x A B C MblFn
6 iblmbf x A B 𝐿 1 x A B MblFn
7 2 6 syl φ x A B MblFn
8 7 1 mbfmptcl φ x A B
9 iblmbf x A C 𝐿 1 x A C MblFn
10 4 9 syl φ x A C MblFn
11 10 3 mbfmptcl φ x A C
12 11 negcld φ x A C
13 3 4 iblneg φ x A C 𝐿 1
14 8 11 negsubd φ x A B + C = B C
15 14 mpteq2dva φ x A B + C = x A B C
16 15 5 eqeltrd φ x A B + C MblFn
17 8 2 12 13 16 itgaddnc φ A B + C dx = A B dx + A C dx
18 3 4 itgneg φ A C dx = A C dx
19 18 oveq2d φ A B dx + A C dx = A B dx + A C dx
20 17 19 eqtr4d φ A B + C dx = A B dx + A C dx
21 14 itgeq2dv φ A B + C dx = A B C dx
22 1 2 itgcl φ A B dx
23 3 4 itgcl φ A C dx
24 22 23 negsubd φ A B dx + A C dx = A B dx A C dx
25 20 21 24 3eqtr3d φ A B C dx = A B dx A C dx