Metamath Proof Explorer


Theorem itgsubnc

Description: Choice-free analogue of itgsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φxABV
ibladdnc.2 φxAB𝐿1
ibladdnc.3 φxACV
ibladdnc.4 φxAC𝐿1
iblsubnc.m φxABCMblFn
Assertion itgsubnc φABCdx=ABdxACdx

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φxABV
2 ibladdnc.2 φxAB𝐿1
3 ibladdnc.3 φxACV
4 ibladdnc.4 φxAC𝐿1
5 iblsubnc.m φxABCMblFn
6 iblmbf xAB𝐿1xABMblFn
7 2 6 syl φxABMblFn
8 7 1 mbfmptcl φxAB
9 iblmbf xAC𝐿1xACMblFn
10 4 9 syl φxACMblFn
11 10 3 mbfmptcl φxAC
12 11 negcld φxAC
13 3 4 iblneg φxAC𝐿1
14 8 11 negsubd φxAB+C=BC
15 14 mpteq2dva φxAB+C=xABC
16 15 5 eqeltrd φxAB+CMblFn
17 8 2 12 13 16 itgaddnc φAB+Cdx=ABdx+ACdx
18 3 4 itgneg φACdx=ACdx
19 18 oveq2d φABdx+ACdx=ABdx+ACdx
20 17 19 eqtr4d φAB+Cdx=ABdx+ACdx
21 14 itgeq2dv φAB+Cdx=ABCdx
22 1 2 itgcl φABdx
23 3 4 itgcl φACdx
24 22 23 negsubd φABdx+ACdx=ABdxACdx
25 20 21 24 3eqtr3d φABCdx=ABdxACdx