Step |
Hyp |
Ref |
Expression |
1 |
|
ibladdnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
ibladdnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
3 |
|
ibladdnc.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
4 |
|
ibladdnc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
5 |
|
iblsubnc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ MblFn ) |
6 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
8 |
7 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
9 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
11 |
10 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
12 |
11
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
13 |
3 4
|
iblneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ 𝐿1 ) |
14 |
8 11
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
15 |
14
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) |
16 |
15 5
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ MblFn ) |
17 |
8 2 12 13 16
|
itgaddnc |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) ) |
18 |
3 4
|
itgneg |
⊢ ( 𝜑 → - ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐴 - 𝐶 d 𝑥 ) |
19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) ) |
20 |
17 19
|
eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) ) |
21 |
14
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ∫ 𝐴 ( 𝐵 − 𝐶 ) d 𝑥 ) |
22 |
1 2
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
23 |
3 4
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ∈ ℂ ) |
24 |
22 23
|
negsubd |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) ) |
25 |
20 21 24
|
3eqtr3d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 − 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) ) |