Metamath Proof Explorer


Theorem itgsubnc

Description: Choice-free analogue of itgsub . (Contributed by Brendan Leahy, 11-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
ibladdnc.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
ibladdnc.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝑉 )
ibladdnc.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
iblsubnc.m ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ MblFn )
Assertion itgsubnc ( 𝜑 → ∫ 𝐴 ( 𝐵𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) )

Proof

Step Hyp Ref Expression
1 ibladdnc.1 ( ( 𝜑𝑥𝐴 ) → 𝐵𝑉 )
2 ibladdnc.2 ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ 𝐿1 )
3 ibladdnc.3 ( ( 𝜑𝑥𝐴 ) → 𝐶𝑉 )
4 ibladdnc.4 ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ 𝐿1 )
5 iblsubnc.m ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) ∈ MblFn )
6 iblmbf ( ( 𝑥𝐴𝐵 ) ∈ 𝐿1 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
7 2 6 syl ( 𝜑 → ( 𝑥𝐴𝐵 ) ∈ MblFn )
8 7 1 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
9 iblmbf ( ( 𝑥𝐴𝐶 ) ∈ 𝐿1 → ( 𝑥𝐴𝐶 ) ∈ MblFn )
10 4 9 syl ( 𝜑 → ( 𝑥𝐴𝐶 ) ∈ MblFn )
11 10 3 mbfmptcl ( ( 𝜑𝑥𝐴 ) → 𝐶 ∈ ℂ )
12 11 negcld ( ( 𝜑𝑥𝐴 ) → - 𝐶 ∈ ℂ )
13 3 4 iblneg ( 𝜑 → ( 𝑥𝐴 ↦ - 𝐶 ) ∈ 𝐿1 )
14 8 11 negsubd ( ( 𝜑𝑥𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵𝐶 ) )
15 14 mpteq2dva ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥𝐴 ↦ ( 𝐵𝐶 ) ) )
16 15 5 eqeltrd ( 𝜑 → ( 𝑥𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ MblFn )
17 8 2 12 13 16 itgaddnc ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) )
18 3 4 itgneg ( 𝜑 → - ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐴 - 𝐶 d 𝑥 )
19 18 oveq2d ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) )
20 17 19 eqtr4d ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) )
21 14 itgeq2dv ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ∫ 𝐴 ( 𝐵𝐶 ) d 𝑥 )
22 1 2 itgcl ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ )
23 3 4 itgcl ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ∈ ℂ )
24 22 23 negsubd ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) )
25 20 21 24 3eqtr3d ( 𝜑 → ∫ 𝐴 ( 𝐵𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) )