| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
ibladdnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
ibladdnc.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
ibladdnc.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 5 |
|
iblsubnc.m |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ∈ MblFn ) |
| 6 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 |
2 6
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 8 |
7 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 9 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 10 |
4 9
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 11 |
10 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 12 |
11
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
| 13 |
3 4
|
iblneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ 𝐿1 ) |
| 14 |
8 11
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 15 |
14
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 − 𝐶 ) ) ) |
| 16 |
15 5
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐵 + - 𝐶 ) ) ∈ MblFn ) |
| 17 |
8 2 12 13 16
|
itgaddnc |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) ) |
| 18 |
3 4
|
itgneg |
⊢ ( 𝜑 → - ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐴 - 𝐶 d 𝑥 ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) ) |
| 20 |
17 19
|
eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) ) |
| 21 |
14
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ∫ 𝐴 ( 𝐵 − 𝐶 ) d 𝑥 ) |
| 22 |
1 2
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 23 |
3 4
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ∈ ℂ ) |
| 24 |
22 23
|
negsubd |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) ) |
| 25 |
20 21 24
|
3eqtr3d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 − 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) ) |