| Step |
Hyp |
Ref |
Expression |
| 1 |
|
itgadd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
itgadd.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
itgadd.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) |
| 4 |
|
itgadd.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 ) |
| 5 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 7 |
6 1
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 8 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) |
| 10 |
9 3
|
mbfmptcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 11 |
10
|
negcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - 𝐶 ∈ ℂ ) |
| 12 |
3 4
|
iblneg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - 𝐶 ) ∈ 𝐿1 ) |
| 13 |
7 2 11 12
|
itgadd |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) ) |
| 14 |
3 4
|
itgneg |
⊢ ( 𝜑 → - ∫ 𝐴 𝐶 d 𝑥 = ∫ 𝐴 - 𝐶 d 𝑥 ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 + ∫ 𝐴 - 𝐶 d 𝑥 ) ) |
| 16 |
13 15
|
eqtr4d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) ) |
| 17 |
7 10
|
negsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + - 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 18 |
17
|
itgeq2dv |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 + - 𝐶 ) d 𝑥 = ∫ 𝐴 ( 𝐵 − 𝐶 ) d 𝑥 ) |
| 19 |
1 2
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 ∈ ℂ ) |
| 20 |
3 4
|
itgcl |
⊢ ( 𝜑 → ∫ 𝐴 𝐶 d 𝑥 ∈ ℂ ) |
| 21 |
19 20
|
negsubd |
⊢ ( 𝜑 → ( ∫ 𝐴 𝐵 d 𝑥 + - ∫ 𝐴 𝐶 d 𝑥 ) = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) ) |
| 22 |
16 18 21
|
3eqtr3d |
⊢ ( 𝜑 → ∫ 𝐴 ( 𝐵 − 𝐶 ) d 𝑥 = ( ∫ 𝐴 𝐵 d 𝑥 − ∫ 𝐴 𝐶 d 𝑥 ) ) |