| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iblabsnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
| 2 |
|
iblabsnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| 3 |
|
iblabsnclem.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 4 |
|
iblabsnclem.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 5 |
|
iblabsnclem.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 6 |
5
|
iblrelem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 7 |
4 6
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
| 8 |
7
|
simp1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
| 9 |
8 5
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 10 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 12 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 14 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 15 |
14
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
| 16 |
|
0re |
⊢ 0 ∈ ℝ |
| 17 |
|
ifcl |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ∈ ℝ ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ∈ ℝ ) |
| 19 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 21 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = 0 ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = 0 ) |
| 23 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 24 |
23
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 25 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) : 𝐴 ⟶ ℝ ) |
| 26 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
| 27 |
26
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 28 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
| 30 |
28 29
|
absled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ 𝑦 ↔ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 31 |
30
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ 𝑦 ↔ ¬ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 32 |
29 26
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ 𝑦 ) ) |
| 33 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
| 34 |
33
|
rexrd |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ* ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ* ) |
| 36 |
|
elioomnf |
⊢ ( - 𝑦 ∈ ℝ* → ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) < - 𝑦 ) ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) < - 𝑦 ) ) ) |
| 38 |
28
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) < - 𝑦 ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) < - 𝑦 ) ) ) |
| 39 |
29
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ ) |
| 40 |
28 39
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) < - 𝑦 ↔ ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ) ) |
| 41 |
37 38 40
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ) ) |
| 42 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
| 43 |
42
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
| 44 |
|
elioopnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 46 |
28
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( 𝐹 ‘ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 47 |
29 28
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( 𝐹 ‘ 𝐵 ) ↔ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 48 |
45 46 47
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ↔ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 49 |
41 48
|
orbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∨ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 50 |
|
ianor |
⊢ ( ¬ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ↔ ( ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∨ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) |
| 51 |
49 50
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ¬ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
| 52 |
31 32 51
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 53 |
|
elioopnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 54 |
43 53
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| 55 |
27 52 54
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
| 56 |
55
|
rabbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) } ) |
| 57 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 58 |
57
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( 𝑦 (,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) } |
| 59 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) |
| 60 |
59
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) } |
| 61 |
59
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) } |
| 62 |
60 61
|
uneq12i |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) = ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) } ) |
| 63 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) } ) = { 𝑥 ∈ 𝐴 ∣ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) } |
| 64 |
62 63
|
eqtri |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) = { 𝑥 ∈ 𝐴 ∣ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) } |
| 65 |
56 58 64
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( 𝑦 (,) +∞ ) ) = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ) |
| 66 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
| 67 |
4 66
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
| 68 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) |
| 69 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ) |
| 70 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 71 |
|
unmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ∧ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
| 72 |
69 70 71
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
| 73 |
67 68 72
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
| 75 |
65 74
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
| 76 |
|
elioomnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ) ) ) |
| 77 |
43 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ) ) ) |
| 78 |
26
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ) ) ) |
| 79 |
28 29
|
absltd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ↔ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 80 |
77 78 79
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 81 |
28
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) ) |
| 82 |
80 81
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) ) |
| 83 |
|
3anass |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 84 |
82 83
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 85 |
|
elioo2 |
⊢ ( ( - 𝑦 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 86 |
34 42 85
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 87 |
86
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
| 88 |
84 87
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ) ) |
| 89 |
88
|
rabbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) } ) |
| 90 |
57
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( -∞ (,) 𝑦 ) ) = { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) } |
| 91 |
59
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) } |
| 92 |
89 90 91
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ) |
| 93 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ∈ dom vol ) |
| 94 |
67 68 93
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ∈ dom vol ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ∈ dom vol ) |
| 96 |
92 95
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
| 97 |
25 9 75 96
|
ismbf2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 98 |
24 97
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
| 99 |
11 13 18 22 98
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
| 100 |
3 99
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| 101 |
|
reex |
⊢ ℝ ∈ V |
| 102 |
101
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 103 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) |
| 104 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 105 |
5 16 104
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 106 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 107 |
16 5 106
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 108 |
|
elrege0 |
⊢ ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
| 109 |
105 107 108
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 110 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 111 |
110
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 112 |
109 111
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 113 |
103 112
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 115 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) |
| 116 |
5
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 117 |
|
ifcl |
⊢ ( ( - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 118 |
116 16 117
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 119 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 120 |
16 116 119
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 121 |
|
elrege0 |
⊢ ( if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
| 122 |
118 120 121
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 123 |
122 111
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 124 |
115 123
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 126 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
| 127 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
| 128 |
102 114 125 126 127
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) |
| 129 |
103 115
|
oveq12i |
⊢ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 130 |
|
max0add |
⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 131 |
5 130
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 132 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 134 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 135 |
134
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 136 |
133 135
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
| 137 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 138 |
131 136 137
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 139 |
138
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
| 140 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 141 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = 0 ) |
| 142 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = 0 ) |
| 143 |
141 142
|
oveq12d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = ( 0 + 0 ) ) |
| 144 |
140 143 21
|
3eqtr4a |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 145 |
139 144
|
pm2.61d1 |
⊢ ( 𝜑 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 146 |
129 145
|
eqtrid |
⊢ ( 𝜑 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 147 |
146
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
| 148 |
128 147
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
| 149 |
3 148
|
eqtr4id |
⊢ ( 𝜑 → 𝐺 = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) |
| 150 |
149
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 151 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 152 |
103 141
|
eqtrid |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
| 153 |
20 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
| 154 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 155 |
154
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 156 |
155
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 157 |
5 8
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 158 |
156 157
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 159 |
11 13 151 153 158
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 160 |
114
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 161 |
7
|
simp2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 162 |
125
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 163 |
7
|
simp3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 164 |
159 160 161 162 163
|
itg2addnc |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 165 |
150 164
|
eqtrd |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 166 |
161 163
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ∈ ℝ ) |
| 167 |
165 166
|
eqeltrd |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 168 |
100 167
|
jca |
⊢ ( 𝜑 → ( 𝐺 ∈ MblFn ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |