Step |
Hyp |
Ref |
Expression |
1 |
|
iblabsnc.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) |
2 |
|
iblabsnc.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
3 |
|
iblabsnclem.1 |
⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
4 |
|
iblabsnclem.2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ) |
5 |
|
iblabsnclem.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
6 |
5
|
iblrelem |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
7 |
4 6
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
8 |
7
|
simp1d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
9 |
8 5
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
10 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
12 |
|
rembl |
⊢ ℝ ∈ dom vol |
13 |
12
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
14 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
15 |
14
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
16 |
|
0re |
⊢ 0 ∈ ℝ |
17 |
|
ifcl |
⊢ ( ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ∈ ℝ ) |
18 |
15 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ∈ ℝ ) |
19 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
21 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = 0 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = 0 ) |
23 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
24 |
23
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
25 |
15
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) : 𝐴 ⟶ ℝ ) |
26 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
27 |
26
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
28 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
29 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ ) |
30 |
28 29
|
absled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ 𝑦 ↔ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
31 |
30
|
notbid |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ 𝑦 ↔ ¬ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
32 |
29 26
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ↔ ¬ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ≤ 𝑦 ) ) |
33 |
|
renegcl |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ ) |
34 |
33
|
rexrd |
⊢ ( 𝑦 ∈ ℝ → - 𝑦 ∈ ℝ* ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ* ) |
36 |
|
elioomnf |
⊢ ( - 𝑦 ∈ ℝ* → ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) < - 𝑦 ) ) ) |
37 |
35 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) < - 𝑦 ) ) ) |
38 |
28
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) < - 𝑦 ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) < - 𝑦 ) ) ) |
39 |
29
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → - 𝑦 ∈ ℝ ) |
40 |
28 39
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) < - 𝑦 ↔ ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ) ) |
41 |
37 38 40
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ↔ ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ) ) |
42 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
43 |
42
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → 𝑦 ∈ ℝ* ) |
44 |
|
elioopnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
46 |
28
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( 𝐹 ‘ 𝐵 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 𝑦 < ( 𝐹 ‘ 𝐵 ) ) ) ) |
47 |
29 28
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 < ( 𝐹 ‘ 𝐵 ) ↔ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) |
48 |
45 46 47
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ↔ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) |
49 |
41 48
|
orbi12d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ( ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∨ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
50 |
|
ianor |
⊢ ( ¬ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ↔ ( ¬ - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∨ ¬ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) |
51 |
49 50
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ ¬ ( - 𝑦 ≤ ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ≤ 𝑦 ) ) ) |
52 |
31 32 51
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ↔ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
53 |
|
elioopnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
54 |
43 53
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ 𝑦 < ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
55 |
27 52 54
|
3bitr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) ) ) |
56 |
55
|
rabbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) } = { 𝑥 ∈ 𝐴 ∣ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) } ) |
57 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
58 |
57
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( 𝑦 (,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( 𝑦 (,) +∞ ) } |
59 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) |
60 |
59
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) } |
61 |
59
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) } |
62 |
60 61
|
uneq12i |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) = ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) } ) |
63 |
|
unrab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) } ∪ { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) } ) = { 𝑥 ∈ 𝐴 ∣ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) } |
64 |
62 63
|
eqtri |
⊢ ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) = { 𝑥 ∈ 𝐴 ∣ ( ( 𝐹 ‘ 𝐵 ) ∈ ( -∞ (,) - 𝑦 ) ∨ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝑦 (,) +∞ ) ) } |
65 |
56 58 64
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( 𝑦 (,) +∞ ) ) = ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ) |
66 |
|
iblmbf |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
67 |
4 66
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
68 |
5
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) |
69 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ) |
70 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
71 |
|
unmbl |
⊢ ( ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∈ dom vol ∧ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
72 |
69 70 71
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
73 |
67 68 72
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
74 |
73
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( -∞ (,) - 𝑦 ) ) ∪ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( 𝑦 (,) +∞ ) ) ) ∈ dom vol ) |
75 |
65 74
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( 𝑦 (,) +∞ ) ) ∈ dom vol ) |
76 |
|
elioomnf |
⊢ ( 𝑦 ∈ ℝ* → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ) ) ) |
77 |
43 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ) ) ) |
78 |
26
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ↔ ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ∧ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ) ) ) |
79 |
28 29
|
absltd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) < 𝑦 ↔ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
80 |
77 78 79
|
3bitr2d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
81 |
28
|
biantrurd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) ) |
82 |
80 81
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) ) |
83 |
|
3anass |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ ( - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
84 |
82 83
|
bitr4di |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
85 |
|
elioo2 |
⊢ ( ( - 𝑦 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
86 |
34 42 85
|
syl2anc |
⊢ ( 𝑦 ∈ ℝ → ( ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
87 |
86
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ - 𝑦 < ( 𝐹 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) < 𝑦 ) ) ) |
88 |
84 87
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) ) ) |
89 |
88
|
rabbidva |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) } = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) } ) |
90 |
57
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( -∞ (,) 𝑦 ) ) = { 𝑥 ∈ 𝐴 ∣ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ( -∞ (,) 𝑦 ) } |
91 |
59
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) = { 𝑥 ∈ 𝐴 ∣ ( 𝐹 ‘ 𝐵 ) ∈ ( - 𝑦 (,) 𝑦 ) } |
92 |
89 90 91
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( -∞ (,) 𝑦 ) ) = ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ) |
93 |
|
mbfima |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ∈ dom vol ) |
94 |
67 68 93
|
syl2anc |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ∈ dom vol ) |
95 |
94
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) “ ( - 𝑦 (,) 𝑦 ) ) ∈ dom vol ) |
96 |
92 95
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ◡ ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) “ ( -∞ (,) 𝑦 ) ) ∈ dom vol ) |
97 |
25 9 75 96
|
ismbf2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ∈ MblFn ) |
98 |
24 97
|
eqeltrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
99 |
11 13 18 22 98
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
100 |
3 99
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
101 |
|
reex |
⊢ ℝ ∈ V |
102 |
101
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
103 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) |
104 |
|
ifcl |
⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
105 |
5 16 104
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
106 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
107 |
16 5 106
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
108 |
|
elrege0 |
⊢ ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
109 |
105 107 108
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
110 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
111 |
110
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
112 |
109 111
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
113 |
103 112
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
114 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
115 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) |
116 |
5
|
renegcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
117 |
|
ifcl |
⊢ ( ( - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
118 |
116 16 117
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
119 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
120 |
16 116 119
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
121 |
|
elrege0 |
⊢ ( if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
122 |
118 120 121
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
123 |
122 111
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
124 |
115 123
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
126 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
127 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
128 |
102 114 125 126 127
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) |
129 |
103 115
|
oveq12i |
⊢ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) |
130 |
|
max0add |
⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
131 |
5 130
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
132 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
134 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
135 |
134
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
136 |
133 135
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
137 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
138 |
131 136 137
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
139 |
138
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
140 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
141 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = 0 ) |
142 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = 0 ) |
143 |
141 142
|
oveq12d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = ( 0 + 0 ) ) |
144 |
140 143 21
|
3eqtr4a |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
145 |
139 144
|
pm2.61d1 |
⊢ ( 𝜑 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
146 |
129 145
|
syl5eq |
⊢ ( 𝜑 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
147 |
146
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
148 |
128 147
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
149 |
3 148
|
eqtr4id |
⊢ ( 𝜑 → 𝐺 = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) |
150 |
149
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
151 |
113
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
152 |
103 141
|
syl5eq |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
153 |
20 152
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
154 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) ) ) |
155 |
154
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
156 |
155
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
157 |
5 8
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
158 |
156 157
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
159 |
11 13 151 153 158
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
160 |
114
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
161 |
7
|
simp2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
162 |
125
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
163 |
7
|
simp3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
164 |
159 160 161 162 163
|
itg2addnc |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
165 |
150 164
|
eqtrd |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
166 |
161 163
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ∈ ℝ ) |
167 |
165 166
|
eqeltrd |
⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
168 |
100 167
|
jca |
⊢ ( 𝜑 → ( 𝐺 ∈ MblFn ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |