Metamath Proof Explorer


Theorem ibladdnc

Description: Choice-free analogue of itgadd . A measurability hypothesis is necessitated by the loss of mbfadd ; for large classes of functions, such as continuous functions, it should be relatively easy to show. (Contributed by Brendan Leahy, 1-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φ x A B V
ibladdnc.2 φ x A B 𝐿 1
ibladdnc.3 φ x A C V
ibladdnc.4 φ x A C 𝐿 1
ibladdnc.m φ x A B + C MblFn
Assertion ibladdnc φ x A B + C 𝐿 1

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φ x A B V
2 ibladdnc.2 φ x A B 𝐿 1
3 ibladdnc.3 φ x A C V
4 ibladdnc.4 φ x A C 𝐿 1
5 ibladdnc.m φ x A B + C MblFn
6 iblmbf x A B 𝐿 1 x A B MblFn
7 2 6 syl φ x A B MblFn
8 7 1 mbfmptcl φ x A B
9 8 recld φ x A B
10 iblmbf x A C 𝐿 1 x A C MblFn
11 4 10 syl φ x A C MblFn
12 11 3 mbfmptcl φ x A C
13 12 recld φ x A C
14 8 12 readdd φ x A B + C = B + C
15 8 ismbfcn2 φ x A B MblFn x A B MblFn x A B MblFn
16 7 15 mpbid φ x A B MblFn x A B MblFn
17 16 simpld φ x A B MblFn
18 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
19 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
20 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
21 eqid 2 x if x A 0 B B 0 = 2 x if x A 0 B B 0
22 18 19 20 21 1 iblcnlem φ x A B 𝐿 1 x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
23 2 22 mpbid φ x A B MblFn 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0 2 x if x A 0 B B 0
24 23 simp2d φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0
25 24 simpld φ 2 x if x A 0 B B 0
26 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
27 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
28 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
29 eqid 2 x if x A 0 C C 0 = 2 x if x A 0 C C 0
30 26 27 28 29 3 iblcnlem φ x A C 𝐿 1 x A C MblFn 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0
31 4 30 mpbid φ x A C MblFn 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0 2 x if x A 0 C C 0
32 31 simp2d φ 2 x if x A 0 C C 0 2 x if x A 0 C C 0
33 32 simpld φ 2 x if x A 0 C C 0
34 9 13 14 17 25 33 ibladdnclem φ 2 x if x A 0 B + C B + C 0
35 9 renegcld φ x A B
36 13 renegcld φ x A C
37 14 negeqd φ x A B + C = B + C
38 9 recnd φ x A B
39 13 recnd φ x A C
40 38 39 negdid φ x A B + C = - B + C
41 37 40 eqtrd φ x A B + C = - B + C
42 9 17 mbfneg φ x A B MblFn
43 24 simprd φ 2 x if x A 0 B B 0
44 32 simprd φ 2 x if x A 0 C C 0
45 35 36 41 42 43 44 ibladdnclem φ 2 x if x A 0 B + C B + C 0
46 34 45 jca φ 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0
47 8 imcld φ x A B
48 12 imcld φ x A C
49 8 12 imaddd φ x A B + C = B + C
50 16 simprd φ x A B MblFn
51 23 simp3d φ 2 x if x A 0 B B 0 2 x if x A 0 B B 0
52 51 simpld φ 2 x if x A 0 B B 0
53 31 simp3d φ 2 x if x A 0 C C 0 2 x if x A 0 C C 0
54 53 simpld φ 2 x if x A 0 C C 0
55 47 48 49 50 52 54 ibladdnclem φ 2 x if x A 0 B + C B + C 0
56 47 renegcld φ x A B
57 48 renegcld φ x A C
58 49 negeqd φ x A B + C = B + C
59 47 recnd φ x A B
60 48 recnd φ x A C
61 59 60 negdid φ x A B + C = - B + C
62 58 61 eqtrd φ x A B + C = - B + C
63 47 50 mbfneg φ x A B MblFn
64 51 simprd φ 2 x if x A 0 B B 0
65 53 simprd φ 2 x if x A 0 C C 0
66 56 57 62 63 64 65 ibladdnclem φ 2 x if x A 0 B + C B + C 0
67 55 66 jca φ 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0
68 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
69 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
70 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
71 eqid 2 x if x A 0 B + C B + C 0 = 2 x if x A 0 B + C B + C 0
72 ovexd φ x A B + C V
73 68 69 70 71 72 iblcnlem φ x A B + C 𝐿 1 x A B + C MblFn 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0 2 x if x A 0 B + C B + C 0
74 5 46 67 73 mpbir3and φ x A B + C 𝐿 1