Metamath Proof Explorer


Theorem ibladdnclem

Description: Lemma for ibladdnc ; cf ibladdlem , whose fifth hypothesis is rendered unnecessary by the weakened hypotheses of itg2addnc . (Contributed by Brendan Leahy, 31-Oct-2017)

Ref Expression
Hypotheses ibladdnclem.1 φ x A B
ibladdnclem.2 φ x A C
ibladdnclem.3 φ x A D = B + C
ibladdnclem.4 φ x A B MblFn
ibladdnclem.6 φ 2 x if x A 0 B B 0
ibladdnclem.7 φ 2 x if x A 0 C C 0
Assertion ibladdnclem φ 2 x if x A 0 D D 0

Proof

Step Hyp Ref Expression
1 ibladdnclem.1 φ x A B
2 ibladdnclem.2 φ x A C
3 ibladdnclem.3 φ x A D = B + C
4 ibladdnclem.4 φ x A B MblFn
5 ibladdnclem.6 φ 2 x if x A 0 B B 0
6 ibladdnclem.7 φ 2 x if x A 0 C C 0
7 ifan if x A 0 D D 0 = if x A if 0 D D 0 0
8 1 2 readdcld φ x A B + C
9 3 8 eqeltrd φ x A D
10 0re 0
11 ifcl D 0 if 0 D D 0
12 9 10 11 sylancl φ x A if 0 D D 0
13 12 rexrd φ x A if 0 D D 0 *
14 max1 0 D 0 if 0 D D 0
15 10 9 14 sylancr φ x A 0 if 0 D D 0
16 elxrge0 if 0 D D 0 0 +∞ if 0 D D 0 * 0 if 0 D D 0
17 13 15 16 sylanbrc φ x A if 0 D D 0 0 +∞
18 0e0iccpnf 0 0 +∞
19 18 a1i φ ¬ x A 0 0 +∞
20 17 19 ifclda φ if x A if 0 D D 0 0 0 +∞
21 20 adantr φ x if x A if 0 D D 0 0 0 +∞
22 7 21 eqeltrid φ x if x A 0 D D 0 0 +∞
23 22 fmpttd φ x if x A 0 D D 0 : 0 +∞
24 reex V
25 24 a1i φ V
26 ifan if x A 0 B B 0 = if x A if 0 B B 0 0
27 ifcl B 0 if 0 B B 0
28 1 10 27 sylancl φ x A if 0 B B 0
29 10 a1i φ ¬ x A 0
30 28 29 ifclda φ if x A if 0 B B 0 0
31 26 30 eqeltrid φ if x A 0 B B 0
32 31 adantr φ x if x A 0 B B 0
33 ifan if x A 0 C C 0 = if x A if 0 C C 0 0
34 ifcl C 0 if 0 C C 0
35 2 10 34 sylancl φ x A if 0 C C 0
36 35 29 ifclda φ if x A if 0 C C 0 0
37 33 36 eqeltrid φ if x A 0 C C 0
38 37 adantr φ x if x A 0 C C 0
39 eqidd φ x if x A 0 B B 0 = x if x A 0 B B 0
40 eqidd φ x if x A 0 C C 0 = x if x A 0 C C 0
41 25 32 38 39 40 offval2 φ x if x A 0 B B 0 + f x if x A 0 C C 0 = x if x A 0 B B 0 + if x A 0 C C 0
42 iftrue x A if x A if 0 B B 0 + if 0 C C 0 0 = if 0 B B 0 + if 0 C C 0
43 ibar x A 0 B x A 0 B
44 43 ifbid x A if 0 B B 0 = if x A 0 B B 0
45 ibar x A 0 C x A 0 C
46 45 ifbid x A if 0 C C 0 = if x A 0 C C 0
47 44 46 oveq12d x A if 0 B B 0 + if 0 C C 0 = if x A 0 B B 0 + if x A 0 C C 0
48 42 47 eqtr2d x A if x A 0 B B 0 + if x A 0 C C 0 = if x A if 0 B B 0 + if 0 C C 0 0
49 00id 0 + 0 = 0
50 simpl x A 0 B x A
51 50 con3i ¬ x A ¬ x A 0 B
52 51 iffalsed ¬ x A if x A 0 B B 0 = 0
53 simpl x A 0 C x A
54 53 con3i ¬ x A ¬ x A 0 C
55 54 iffalsed ¬ x A if x A 0 C C 0 = 0
56 52 55 oveq12d ¬ x A if x A 0 B B 0 + if x A 0 C C 0 = 0 + 0
57 iffalse ¬ x A if x A if 0 B B 0 + if 0 C C 0 0 = 0
58 49 56 57 3eqtr4a ¬ x A if x A 0 B B 0 + if x A 0 C C 0 = if x A if 0 B B 0 + if 0 C C 0 0
59 48 58 pm2.61i if x A 0 B B 0 + if x A 0 C C 0 = if x A if 0 B B 0 + if 0 C C 0 0
60 59 mpteq2i x if x A 0 B B 0 + if x A 0 C C 0 = x if x A if 0 B B 0 + if 0 C C 0 0
61 41 60 eqtrdi φ x if x A 0 B B 0 + f x if x A 0 C C 0 = x if x A if 0 B B 0 + if 0 C C 0 0
62 61 fveq2d φ 2 x if x A 0 B B 0 + f x if x A 0 C C 0 = 2 x if x A if 0 B B 0 + if 0 C C 0 0
63 4 1 mbfdm2 φ A dom vol
64 mblss A dom vol A
65 63 64 syl φ A
66 rembl dom vol
67 66 a1i φ dom vol
68 31 adantr φ x A if x A 0 B B 0
69 eldifn x A ¬ x A
70 69 adantl φ x A ¬ x A
71 70 intnanrd φ x A ¬ x A 0 B
72 71 iffalsed φ x A if x A 0 B B 0 = 0
73 44 mpteq2ia x A if 0 B B 0 = x A if x A 0 B B 0
74 1 4 mbfpos φ x A if 0 B B 0 MblFn
75 73 74 eqeltrrid φ x A if x A 0 B B 0 MblFn
76 65 67 68 72 75 mbfss φ x if x A 0 B B 0 MblFn
77 max1 0 B 0 if 0 B B 0
78 10 1 77 sylancr φ x A 0 if 0 B B 0
79 elrege0 if 0 B B 0 0 +∞ if 0 B B 0 0 if 0 B B 0
80 28 78 79 sylanbrc φ x A if 0 B B 0 0 +∞
81 0e0icopnf 0 0 +∞
82 81 a1i φ ¬ x A 0 0 +∞
83 80 82 ifclda φ if x A if 0 B B 0 0 0 +∞
84 26 83 eqeltrid φ if x A 0 B B 0 0 +∞
85 84 adantr φ x if x A 0 B B 0 0 +∞
86 85 fmpttd φ x if x A 0 B B 0 : 0 +∞
87 max1 0 C 0 if 0 C C 0
88 10 2 87 sylancr φ x A 0 if 0 C C 0
89 elrege0 if 0 C C 0 0 +∞ if 0 C C 0 0 if 0 C C 0
90 35 88 89 sylanbrc φ x A if 0 C C 0 0 +∞
91 90 82 ifclda φ if x A if 0 C C 0 0 0 +∞
92 33 91 eqeltrid φ if x A 0 C C 0 0 +∞
93 92 adantr φ x if x A 0 C C 0 0 +∞
94 93 fmpttd φ x if x A 0 C C 0 : 0 +∞
95 76 86 5 94 6 itg2addnc φ 2 x if x A 0 B B 0 + f x if x A 0 C C 0 = 2 x if x A 0 B B 0 + 2 x if x A 0 C C 0
96 62 95 eqtr3d φ 2 x if x A if 0 B B 0 + if 0 C C 0 0 = 2 x if x A 0 B B 0 + 2 x if x A 0 C C 0
97 5 6 readdcld φ 2 x if x A 0 B B 0 + 2 x if x A 0 C C 0
98 96 97 eqeltrd φ 2 x if x A if 0 B B 0 + if 0 C C 0 0
99 28 35 readdcld φ x A if 0 B B 0 + if 0 C C 0
100 99 rexrd φ x A if 0 B B 0 + if 0 C C 0 *
101 28 35 78 88 addge0d φ x A 0 if 0 B B 0 + if 0 C C 0
102 elxrge0 if 0 B B 0 + if 0 C C 0 0 +∞ if 0 B B 0 + if 0 C C 0 * 0 if 0 B B 0 + if 0 C C 0
103 100 101 102 sylanbrc φ x A if 0 B B 0 + if 0 C C 0 0 +∞
104 103 19 ifclda φ if x A if 0 B B 0 + if 0 C C 0 0 0 +∞
105 104 adantr φ x if x A if 0 B B 0 + if 0 C C 0 0 0 +∞
106 105 fmpttd φ x if x A if 0 B B 0 + if 0 C C 0 0 : 0 +∞
107 max2 0 B B if 0 B B 0
108 10 1 107 sylancr φ x A B if 0 B B 0
109 max2 0 C C if 0 C C 0
110 10 2 109 sylancr φ x A C if 0 C C 0
111 1 2 28 35 108 110 le2addd φ x A B + C if 0 B B 0 + if 0 C C 0
112 3 111 eqbrtrd φ x A D if 0 B B 0 + if 0 C C 0
113 breq1 D = if 0 D D 0 D if 0 B B 0 + if 0 C C 0 if 0 D D 0 if 0 B B 0 + if 0 C C 0
114 breq1 0 = if 0 D D 0 0 if 0 B B 0 + if 0 C C 0 if 0 D D 0 if 0 B B 0 + if 0 C C 0
115 113 114 ifboth D if 0 B B 0 + if 0 C C 0 0 if 0 B B 0 + if 0 C C 0 if 0 D D 0 if 0 B B 0 + if 0 C C 0
116 112 101 115 syl2anc φ x A if 0 D D 0 if 0 B B 0 + if 0 C C 0
117 iftrue x A if x A if 0 D D 0 0 = if 0 D D 0
118 117 adantl φ x A if x A if 0 D D 0 0 = if 0 D D 0
119 42 adantl φ x A if x A if 0 B B 0 + if 0 C C 0 0 = if 0 B B 0 + if 0 C C 0
120 116 118 119 3brtr4d φ x A if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
121 120 ex φ x A if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
122 0le0 0 0
123 122 a1i ¬ x A 0 0
124 iffalse ¬ x A if x A if 0 D D 0 0 = 0
125 123 124 57 3brtr4d ¬ x A if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
126 121 125 pm2.61d1 φ if x A if 0 D D 0 0 if x A if 0 B B 0 + if 0 C C 0 0
127 7 126 eqbrtrid φ if x A 0 D D 0 if x A if 0 B B 0 + if 0 C C 0 0
128 127 ralrimivw φ x if x A 0 D D 0 if x A if 0 B B 0 + if 0 C C 0 0
129 eqidd φ x if x A 0 D D 0 = x if x A 0 D D 0
130 eqidd φ x if x A if 0 B B 0 + if 0 C C 0 0 = x if x A if 0 B B 0 + if 0 C C 0 0
131 25 22 105 129 130 ofrfval2 φ x if x A 0 D D 0 f x if x A if 0 B B 0 + if 0 C C 0 0 x if x A 0 D D 0 if x A if 0 B B 0 + if 0 C C 0 0
132 128 131 mpbird φ x if x A 0 D D 0 f x if x A if 0 B B 0 + if 0 C C 0 0
133 itg2le x if x A 0 D D 0 : 0 +∞ x if x A if 0 B B 0 + if 0 C C 0 0 : 0 +∞ x if x A 0 D D 0 f x if x A if 0 B B 0 + if 0 C C 0 0 2 x if x A 0 D D 0 2 x if x A if 0 B B 0 + if 0 C C 0 0
134 23 106 132 133 syl3anc φ 2 x if x A 0 D D 0 2 x if x A if 0 B B 0 + if 0 C C 0 0
135 itg2lecl x if x A 0 D D 0 : 0 +∞ 2 x if x A if 0 B B 0 + if 0 C C 0 0 2 x if x A 0 D D 0 2 x if x A if 0 B B 0 + if 0 C C 0 0 2 x if x A 0 D D 0
136 23 98 134 135 syl3anc φ 2 x if x A 0 D D 0