| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnclem.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
| 2 |
|
ibladdnclem.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 3 |
|
ibladdnclem.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 = ( 𝐵 + 𝐶 ) ) |
| 4 |
|
ibladdnclem.4 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 5 |
|
ibladdnclem.6 |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) ∈ ℝ ) |
| 6 |
|
ibladdnclem.7 |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ∈ ℝ ) |
| 7 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) |
| 8 |
1 2
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℝ ) |
| 9 |
3 8
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ ℝ ) |
| 10 |
|
0re |
⊢ 0 ∈ ℝ |
| 11 |
|
ifcl |
⊢ ( ( 𝐷 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ ) |
| 12 |
9 10 11
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ ) |
| 13 |
12
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ* ) |
| 14 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
| 15 |
10 9 14
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
| 16 |
|
elxrge0 |
⊢ ( if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ( 0 [,] +∞ ) ↔ ( if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) ) |
| 17 |
13 15 16
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 18 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
| 19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 20 |
17 19
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 22 |
7 21
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 23 |
22
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 24 |
|
reex |
⊢ ℝ ∈ V |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
| 26 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) |
| 27 |
|
ifcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 28 |
1 10 27
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ) |
| 29 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ℝ ) |
| 30 |
28 29
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ∈ ℝ ) |
| 31 |
26 30
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ℝ ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ℝ ) |
| 33 |
|
ifan |
⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) |
| 34 |
|
ifcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 35 |
2 10 34
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ) |
| 36 |
35 29
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ∈ ℝ ) |
| 37 |
33 36
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ℝ ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ℝ ) |
| 39 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) |
| 40 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 41 |
25 32 38 39 40
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) |
| 42 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 43 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ 𝐵 ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) ) |
| 44 |
43
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) |
| 45 |
|
ibar |
⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ 𝐶 ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) ) |
| 46 |
45
|
ifbid |
⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) |
| 47 |
44 46
|
oveq12d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) = ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) |
| 48 |
42 47
|
eqtr2d |
⊢ ( 𝑥 ∈ 𝐴 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 49 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 50 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) → 𝑥 ∈ 𝐴 ) |
| 51 |
50
|
con3i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 52 |
51
|
iffalsed |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = 0 ) |
| 53 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) → 𝑥 ∈ 𝐴 ) |
| 54 |
53
|
con3i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) ) |
| 55 |
54
|
iffalsed |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) = 0 ) |
| 56 |
52 55
|
oveq12d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = ( 0 + 0 ) ) |
| 57 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = 0 ) |
| 58 |
49 56 57
|
3eqtr4a |
⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 59 |
48 58
|
pm2.61i |
⊢ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) |
| 60 |
59
|
mpteq2i |
⊢ ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 61 |
41 60
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) |
| 63 |
4 1
|
mbfdm2 |
⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 64 |
|
mblss |
⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) |
| 65 |
63 64
|
syl |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 66 |
|
rembl |
⊢ ℝ ∈ dom vol |
| 67 |
66
|
a1i |
⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 68 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ℝ ) |
| 69 |
|
eldifn |
⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) |
| 70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 71 |
70
|
intnanrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) ) |
| 72 |
71
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) = 0 ) |
| 73 |
44
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) |
| 74 |
1 4
|
mbfpos |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ∈ MblFn ) |
| 75 |
73 74
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∈ MblFn ) |
| 76 |
65 67 68 72 75
|
mbfss |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∈ MblFn ) |
| 77 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 78 |
10 1 77
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 79 |
|
elrege0 |
⊢ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) ) |
| 80 |
28 78 79
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 81 |
|
0e0icopnf |
⊢ 0 ∈ ( 0 [,) +∞ ) |
| 82 |
81
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 83 |
80 82
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐵 , 𝐵 , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 84 |
26 83
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 86 |
85
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 87 |
|
max1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 88 |
10 2 87
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 89 |
|
elrege0 |
⊢ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 90 |
35 88 89
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 91 |
90 82
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐶 , 𝐶 , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 92 |
33 91
|
eqeltrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 94 |
93
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 95 |
76 86 5 94 6
|
itg2addnc |
⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) ) |
| 96 |
62 95
|
eqtr3d |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) ) |
| 97 |
5 6
|
readdcld |
⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵 ) , 𝐵 , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶 ) , 𝐶 , 0 ) ) ) ) ∈ ℝ ) |
| 98 |
96 97
|
eqeltrd |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ∈ ℝ ) |
| 99 |
28 35
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ ) |
| 100 |
99
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ* ) |
| 101 |
28 35 78 88
|
addge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 102 |
|
elxrge0 |
⊢ ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ℝ* ∧ 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 103 |
100 101 102
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∈ ( 0 [,] +∞ ) ) |
| 104 |
103 19
|
ifclda |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 106 |
105
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 107 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 108 |
10 1 107
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ≤ if ( 0 ≤ 𝐵 , 𝐵 , 0 ) ) |
| 109 |
|
max2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 110 |
10 2 109
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ≤ if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) |
| 111 |
1 2 28 35 108 110
|
le2addd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 112 |
3 111
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 113 |
|
breq1 |
⊢ ( 𝐷 = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) → ( 𝐷 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ↔ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 114 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) → ( 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ↔ if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) ) |
| 115 |
113 114
|
ifboth |
⊢ ( ( 𝐷 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ∧ 0 ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 116 |
112 101 115
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ≤ ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 117 |
|
iftrue |
⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
| 118 |
117
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) = if ( 0 ≤ 𝐷 , 𝐷 , 0 ) ) |
| 119 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) = ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) ) |
| 120 |
116 118 119
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 121 |
120
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
| 122 |
|
0le0 |
⊢ 0 ≤ 0 |
| 123 |
122
|
a1i |
⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 124 |
|
iffalse |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) = 0 ) |
| 125 |
123 124 57
|
3brtr4d |
⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 126 |
121 125
|
pm2.61d1 |
⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ 𝐷 , 𝐷 , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 127 |
7 126
|
eqbrtrid |
⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 128 |
127
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) |
| 129 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) |
| 130 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
| 131 |
25 22 105 129 130
|
ofrfval2 |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
| 132 |
128 131
|
mpbird |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) |
| 133 |
|
itg2le |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) |
| 134 |
23 106 132 133
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) |
| 135 |
|
itg2lecl |
⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( if ( 0 ≤ 𝐵 , 𝐵 , 0 ) + if ( 0 ≤ 𝐶 , 𝐶 , 0 ) ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ∈ ℝ ) |
| 136 |
23 98 134 135
|
syl3anc |
⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐷 ) , 𝐷 , 0 ) ) ) ∈ ℝ ) |