Metamath Proof Explorer


Theorem itg2addnc

Description: Alternate proof of itg2add using the "buffer zone" definition from the first lemma, in which every simple function in the set is divided into to by dividing its buffer by a third and finding the largest allowable function locked to a grid laid out in increments of the new, smaller buffer up to the original simple function. The measurability of this function follows from that of the augend, and subtracting it from the original simple function yields another simple function by i1fsub , which is allowable by the fact that the grid must have a mark between one third and two thirds the original buffer. This has two advantages over the current approach: first, eliminating ax-cc , and second, weakening the measurability hypothesis to only the augend. (Contributed by Brendan Leahy, 31-Oct-2017) (Revised by Brendan Leahy, 13-Mar-2018)

Ref Expression
Hypotheses itg2addnc.f1 φ F MblFn
itg2addnc.f2 φ F : 0 +∞
itg2addnc.f3 φ 2 F
itg2addnc.g2 φ G : 0 +∞
itg2addnc.g3 φ 2 G
Assertion itg2addnc φ 2 F + f G = 2 F + 2 G

Proof

Step Hyp Ref Expression
1 itg2addnc.f1 φ F MblFn
2 itg2addnc.f2 φ F : 0 +∞
3 itg2addnc.f3 φ 2 F
4 itg2addnc.g2 φ G : 0 +∞
5 itg2addnc.g3 φ 2 G
6 simprr f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f x = 1 f
7 itg1cl f dom 1 1 f
8 7 adantr f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f 1 f
9 6 8 eqeltrd f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f x
10 9 rexlimiva f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f x
11 10 abssi x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f
12 11 a1i φ x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f
13 i1f0 × 0 dom 1
14 3nn 3
15 nnrp 3 3 +
16 ne0i 3 + +
17 14 15 16 mp2b +
18 2 ffvelrnda φ z F z 0 +∞
19 elrege0 F z 0 +∞ F z 0 F z
20 18 19 sylib φ z F z 0 F z
21 20 simprd φ z 0 F z
22 21 ralrimiva φ z 0 F z
23 reex V
24 23 a1i φ V
25 c0ex 0 V
26 25 a1i φ z 0 V
27 eqidd φ z 0 = z 0
28 2 feqmptd φ F = z F z
29 24 26 18 27 28 ofrfval2 φ z 0 f F z 0 F z
30 22 29 mpbird φ z 0 f F
31 30 ralrimivw φ c + z 0 f F
32 r19.2z + c + z 0 f F c + z 0 f F
33 17 31 32 sylancr φ c + z 0 f F
34 fveq2 f = × 0 1 f = 1 × 0
35 itg10 1 × 0 = 0
36 34 35 eqtr2di f = × 0 0 = 1 f
37 36 biantrud f = × 0 c + z if f z = 0 0 f z + c f F c + z if f z = 0 0 f z + c f F 0 = 1 f
38 fveq1 f = × 0 f z = × 0 z
39 25 fvconst2 z × 0 z = 0
40 38 39 sylan9eq f = × 0 z f z = 0
41 40 iftrued f = × 0 z if f z = 0 0 f z + c = 0
42 41 mpteq2dva f = × 0 z if f z = 0 0 f z + c = z 0
43 42 breq1d f = × 0 z if f z = 0 0 f z + c f F z 0 f F
44 43 rexbidv f = × 0 c + z if f z = 0 0 f z + c f F c + z 0 f F
45 37 44 bitr3d f = × 0 c + z if f z = 0 0 f z + c f F 0 = 1 f c + z 0 f F
46 45 rspcev × 0 dom 1 c + z 0 f F f dom 1 c + z if f z = 0 0 f z + c f F 0 = 1 f
47 13 33 46 sylancr φ f dom 1 c + z if f z = 0 0 f z + c f F 0 = 1 f
48 eqeq1 x = 0 x = 1 f 0 = 1 f
49 48 anbi2d x = 0 c + z if f z = 0 0 f z + c f F x = 1 f c + z if f z = 0 0 f z + c f F 0 = 1 f
50 49 rexbidv x = 0 f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f f dom 1 c + z if f z = 0 0 f z + c f F 0 = 1 f
51 25 50 elab 0 x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f f dom 1 c + z if f z = 0 0 f z + c f F 0 = 1 f
52 47 51 sylibr φ 0 x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f
53 52 ne0d φ x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f
54 icossicc 0 +∞ 0 +∞
55 fss F : 0 +∞ 0 +∞ 0 +∞ F : 0 +∞
56 54 55 mpan2 F : 0 +∞ F : 0 +∞
57 eqid x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f = x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f
58 57 itg2addnclem F : 0 +∞ 2 F = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
59 2 56 58 3syl φ 2 F = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
60 59 3 eqeltrrd φ sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
61 ressxr *
62 11 61 sstri x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f *
63 supxrub x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
64 62 63 mpan b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
65 64 rgen b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
66 brralrspcev sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < a b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b a
67 60 65 66 sylancl φ a b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b a
68 simprr g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g x = 1 g
69 itg1cl g dom 1 1 g
70 69 adantr g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 1 g
71 68 70 eqeltrd g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g x
72 71 rexlimiva g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g x
73 72 abssi x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g
74 73 a1i φ x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g
75 4 ffvelrnda φ z G z 0 +∞
76 elrege0 G z 0 +∞ G z 0 G z
77 75 76 sylib φ z G z 0 G z
78 77 simprd φ z 0 G z
79 78 ralrimiva φ z 0 G z
80 4 feqmptd φ G = z G z
81 24 26 75 27 80 ofrfval2 φ z 0 f G z 0 G z
82 79 81 mpbird φ z 0 f G
83 82 ralrimivw φ d + z 0 f G
84 r19.2z + d + z 0 f G d + z 0 f G
85 17 83 84 sylancr φ d + z 0 f G
86 fveq2 g = × 0 1 g = 1 × 0
87 86 35 eqtr2di g = × 0 0 = 1 g
88 87 biantrud g = × 0 d + z if g z = 0 0 g z + d f G d + z if g z = 0 0 g z + d f G 0 = 1 g
89 fveq1 g = × 0 g z = × 0 z
90 89 39 sylan9eq g = × 0 z g z = 0
91 90 iftrued g = × 0 z if g z = 0 0 g z + d = 0
92 91 mpteq2dva g = × 0 z if g z = 0 0 g z + d = z 0
93 92 breq1d g = × 0 z if g z = 0 0 g z + d f G z 0 f G
94 93 rexbidv g = × 0 d + z if g z = 0 0 g z + d f G d + z 0 f G
95 88 94 bitr3d g = × 0 d + z if g z = 0 0 g z + d f G 0 = 1 g d + z 0 f G
96 95 rspcev × 0 dom 1 d + z 0 f G g dom 1 d + z if g z = 0 0 g z + d f G 0 = 1 g
97 13 85 96 sylancr φ g dom 1 d + z if g z = 0 0 g z + d f G 0 = 1 g
98 eqeq1 x = 0 x = 1 g 0 = 1 g
99 98 anbi2d x = 0 d + z if g z = 0 0 g z + d f G x = 1 g d + z if g z = 0 0 g z + d f G 0 = 1 g
100 99 rexbidv x = 0 g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g g dom 1 d + z if g z = 0 0 g z + d f G 0 = 1 g
101 25 100 elab 0 x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g g dom 1 d + z if g z = 0 0 g z + d f G 0 = 1 g
102 97 101 sylibr φ 0 x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g
103 102 ne0d φ x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g
104 fss G : 0 +∞ 0 +∞ 0 +∞ G : 0 +∞
105 54 104 mpan2 G : 0 +∞ G : 0 +∞
106 eqid x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g = x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g
107 106 itg2addnclem G : 0 +∞ 2 G = sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
108 4 105 107 3syl φ 2 G = sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
109 108 5 eqeltrrd φ sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
110 73 61 sstri x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g *
111 supxrub x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
112 110 111 mpan b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
113 112 rgen b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
114 brralrspcev sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < a b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b a
115 109 113 114 sylancl φ a b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b a
116 eqid s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u = s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
117 12 53 67 74 103 115 116 supadd φ sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g < = sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u <
118 supxrre x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f a b x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f b a sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f <
119 12 53 67 118 syl3anc φ sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f <
120 59 119 eqtrd φ 2 F = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f <
121 supxrre x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g a b x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b a sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < = sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g <
122 74 103 115 121 syl3anc φ sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < = sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g <
123 108 122 eqtrd φ 2 G = sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g <
124 120 123 oveq12d φ 2 F + 2 G = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g <
125 ge0addcl x 0 +∞ y 0 +∞ x + y 0 +∞
126 54 125 sselid x 0 +∞ y 0 +∞ x + y 0 +∞
127 126 adantl φ x 0 +∞ y 0 +∞ x + y 0 +∞
128 inidm =
129 127 2 4 24 24 128 off φ F + f G : 0 +∞
130 eqid s | h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h = s | h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
131 130 itg2addnclem F + f G : 0 +∞ 2 F + f G = sup s | h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h * <
132 129 131 syl φ 2 F + f G = sup s | h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h * <
133 1 2 3 4 5 itg2addnclem3 φ h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h t u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
134 simpl f dom 1 g dom 1 f dom 1
135 simpr f dom 1 g dom 1 g dom 1
136 134 135 i1fadd f dom 1 g dom 1 f + f g dom 1
137 136 ad3antlr φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u f + f g dom 1
138 reeanv c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G c + z if f z = 0 0 f z + c f F d + z if g z = 0 0 g z + d f G
139 138 biimpri c + z if f z = 0 0 f z + c f F d + z if g z = 0 0 g z + d f G c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G
140 139 ad2ant2r c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G
141 ifcl c + d + if c d c d +
142 141 ad2antlr φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G if c d c d +
143 breq1 0 = if f z = 0 0 f z + c 0 F z if f z = 0 0 f z + c F z
144 143 anbi1d 0 = if f z = 0 0 f z + c 0 F z if g z = 0 0 g z + d G z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z
145 144 imbi1d 0 = if f z = 0 0 f z + c 0 F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
146 breq1 f z + c = if f z = 0 0 f z + c f z + c F z if f z = 0 0 f z + c F z
147 146 anbi1d f z + c = if f z = 0 0 f z + c f z + c F z if g z = 0 0 g z + d G z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z
148 147 imbi1d f z + c = if f z = 0 0 f z + c f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
149 breq1 0 = if g z = 0 0 g z + d 0 G z if g z = 0 0 g z + d G z
150 149 anbi2d 0 = if g z = 0 0 g z + d 0 F z 0 G z 0 F z if g z = 0 0 g z + d G z
151 150 imbi1d 0 = if g z = 0 0 g z + d 0 F z 0 G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z 0 F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
152 breq1 g z + d = if g z = 0 0 g z + d g z + d G z if g z = 0 0 g z + d G z
153 152 anbi2d g z + d = if g z = 0 0 g z + d 0 F z g z + d G z 0 F z if g z = 0 0 g z + d G z
154 153 imbi1d g z + d = if g z = 0 0 g z + d 0 F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z 0 F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
155 oveq12 f z = 0 g z = 0 f z + g z = 0 + 0
156 00id 0 + 0 = 0
157 155 156 eqtrdi f z = 0 g z = 0 f z + g z = 0
158 157 iftrued f z = 0 g z = 0 if f z + g z = 0 0 f z + g z + if c d c d = 0
159 158 adantll φ f dom 1 g dom 1 c + d + z f z = 0 g z = 0 if f z + g z = 0 0 f z + g z + if c d c d = 0
160 simpll φ f dom 1 g dom 1 c + d + φ
161 19 simplbi F z 0 +∞ F z
162 18 161 syl φ z F z
163 76 simplbi G z 0 +∞ G z
164 75 163 syl φ z G z
165 162 164 21 78 addge0d φ z 0 F z + G z
166 160 165 sylan φ f dom 1 g dom 1 c + d + z 0 F z + G z
167 166 ad2antrr φ f dom 1 g dom 1 c + d + z f z = 0 g z = 0 0 F z + G z
168 159 167 eqbrtrd φ f dom 1 g dom 1 c + d + z f z = 0 g z = 0 if f z + g z = 0 0 f z + g z + if c d c d F z + G z
169 168 a1d φ f dom 1 g dom 1 c + d + z f z = 0 g z = 0 0 F z 0 G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
170 166 ad2antrr φ f dom 1 g dom 1 c + d + z f z = 0 g z + d G z 0 F z + G z
171 oveq1 f z = 0 f z + g z = 0 + g z
172 simplrr φ f dom 1 g dom 1 c + d + g dom 1
173 i1ff g dom 1 g :
174 173 ffvelrnda g dom 1 z g z
175 172 174 sylan φ f dom 1 g dom 1 c + d + z g z
176 175 recnd φ f dom 1 g dom 1 c + d + z g z
177 176 addid2d φ f dom 1 g dom 1 c + d + z 0 + g z = g z
178 171 177 sylan9eqr φ f dom 1 g dom 1 c + d + z f z = 0 f z + g z = g z
179 178 oveq1d φ f dom 1 g dom 1 c + d + z f z = 0 f z + g z + if c d c d = g z + if c d c d
180 179 adantr φ f dom 1 g dom 1 c + d + z f z = 0 g z + d G z f z + g z + if c d c d = g z + if c d c d
181 141 rpred c + d + if c d c d
182 181 ad2antlr φ f dom 1 g dom 1 c + d + z if c d c d
183 175 182 readdcld φ f dom 1 g dom 1 c + d + z g z + if c d c d
184 183 adantr φ f dom 1 g dom 1 c + d + z g z + d G z g z + if c d c d
185 160 164 sylan φ f dom 1 g dom 1 c + d + z G z
186 185 adantr φ f dom 1 g dom 1 c + d + z g z + d G z G z
187 160 162 sylan φ f dom 1 g dom 1 c + d + z F z
188 187 185 readdcld φ f dom 1 g dom 1 c + d + z F z + G z
189 188 adantr φ f dom 1 g dom 1 c + d + z g z + d G z F z + G z
190 simplrr φ f dom 1 g dom 1 c + d + z d +
191 190 rpred φ f dom 1 g dom 1 c + d + z d
192 rpre c + c
193 rpre d + d
194 min2 c d if c d c d d
195 192 193 194 syl2an c + d + if c d c d d
196 195 ad2antlr φ f dom 1 g dom 1 c + d + z if c d c d d
197 182 191 175 196 leadd2dd φ f dom 1 g dom 1 c + d + z g z + if c d c d g z + d
198 175 191 readdcld φ f dom 1 g dom 1 c + d + z g z + d
199 letr g z + if c d c d g z + d G z g z + if c d c d g z + d g z + d G z g z + if c d c d G z
200 183 198 185 199 syl3anc φ f dom 1 g dom 1 c + d + z g z + if c d c d g z + d g z + d G z g z + if c d c d G z
201 197 200 mpand φ f dom 1 g dom 1 c + d + z g z + d G z g z + if c d c d G z
202 201 imp φ f dom 1 g dom 1 c + d + z g z + d G z g z + if c d c d G z
203 164 162 addge02d φ z 0 F z G z F z + G z
204 21 203 mpbid φ z G z F z + G z
205 160 204 sylan φ f dom 1 g dom 1 c + d + z G z F z + G z
206 205 adantr φ f dom 1 g dom 1 c + d + z g z + d G z G z F z + G z
207 184 186 189 202 206 letrd φ f dom 1 g dom 1 c + d + z g z + d G z g z + if c d c d F z + G z
208 207 adantlr φ f dom 1 g dom 1 c + d + z f z = 0 g z + d G z g z + if c d c d F z + G z
209 180 208 eqbrtrd φ f dom 1 g dom 1 c + d + z f z = 0 g z + d G z f z + g z + if c d c d F z + G z
210 breq1 0 = if f z + g z = 0 0 f z + g z + if c d c d 0 F z + G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
211 breq1 f z + g z + if c d c d = if f z + g z = 0 0 f z + g z + if c d c d f z + g z + if c d c d F z + G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
212 210 211 ifboth 0 F z + G z f z + g z + if c d c d F z + G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
213 170 209 212 syl2anc φ f dom 1 g dom 1 c + d + z f z = 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
214 213 ex φ f dom 1 g dom 1 c + d + z f z = 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
215 214 adantld φ f dom 1 g dom 1 c + d + z f z = 0 0 F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
216 215 adantr φ f dom 1 g dom 1 c + d + z f z = 0 ¬ g z = 0 0 F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
217 151 154 169 216 ifbothda φ f dom 1 g dom 1 c + d + z f z = 0 0 F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
218 149 anbi2d 0 = if g z = 0 0 g z + d f z + c F z 0 G z f z + c F z if g z = 0 0 g z + d G z
219 218 imbi1d 0 = if g z = 0 0 g z + d f z + c F z 0 G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
220 152 anbi2d g z + d = if g z = 0 0 g z + d f z + c F z g z + d G z f z + c F z if g z = 0 0 g z + d G z
221 220 imbi1d g z + d = if g z = 0 0 g z + d f z + c F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
222 166 ad2antrr φ f dom 1 g dom 1 c + d + z g z = 0 f z + c F z 0 F z + G z
223 oveq2 g z = 0 f z + g z = f z + 0
224 simplrl φ f dom 1 g dom 1 c + d + f dom 1
225 i1ff f dom 1 f :
226 225 ffvelrnda f dom 1 z f z
227 224 226 sylan φ f dom 1 g dom 1 c + d + z f z
228 227 recnd φ f dom 1 g dom 1 c + d + z f z
229 228 addid1d φ f dom 1 g dom 1 c + d + z f z + 0 = f z
230 223 229 sylan9eqr φ f dom 1 g dom 1 c + d + z g z = 0 f z + g z = f z
231 230 oveq1d φ f dom 1 g dom 1 c + d + z g z = 0 f z + g z + if c d c d = f z + if c d c d
232 231 adantr φ f dom 1 g dom 1 c + d + z g z = 0 f z + c F z f z + g z + if c d c d = f z + if c d c d
233 227 182 readdcld φ f dom 1 g dom 1 c + d + z f z + if c d c d
234 233 adantr φ f dom 1 g dom 1 c + d + z f z + c F z f z + if c d c d
235 187 adantr φ f dom 1 g dom 1 c + d + z f z + c F z F z
236 188 adantr φ f dom 1 g dom 1 c + d + z f z + c F z F z + G z
237 simplrl φ f dom 1 g dom 1 c + d + z c +
238 237 rpred φ f dom 1 g dom 1 c + d + z c
239 min1 c d if c d c d c
240 192 193 239 syl2an c + d + if c d c d c
241 240 ad2antlr φ f dom 1 g dom 1 c + d + z if c d c d c
242 182 238 227 241 leadd2dd φ f dom 1 g dom 1 c + d + z f z + if c d c d f z + c
243 227 238 readdcld φ f dom 1 g dom 1 c + d + z f z + c
244 letr f z + if c d c d f z + c F z f z + if c d c d f z + c f z + c F z f z + if c d c d F z
245 233 243 187 244 syl3anc φ f dom 1 g dom 1 c + d + z f z + if c d c d f z + c f z + c F z f z + if c d c d F z
246 242 245 mpand φ f dom 1 g dom 1 c + d + z f z + c F z f z + if c d c d F z
247 246 imp φ f dom 1 g dom 1 c + d + z f z + c F z f z + if c d c d F z
248 162 164 addge01d φ z 0 G z F z F z + G z
249 78 248 mpbid φ z F z F z + G z
250 160 249 sylan φ f dom 1 g dom 1 c + d + z F z F z + G z
251 250 adantr φ f dom 1 g dom 1 c + d + z f z + c F z F z F z + G z
252 234 235 236 247 251 letrd φ f dom 1 g dom 1 c + d + z f z + c F z f z + if c d c d F z + G z
253 252 adantlr φ f dom 1 g dom 1 c + d + z g z = 0 f z + c F z f z + if c d c d F z + G z
254 232 253 eqbrtrd φ f dom 1 g dom 1 c + d + z g z = 0 f z + c F z f z + g z + if c d c d F z + G z
255 222 254 212 syl2anc φ f dom 1 g dom 1 c + d + z g z = 0 f z + c F z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
256 255 ex φ f dom 1 g dom 1 c + d + z g z = 0 f z + c F z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
257 256 adantlr φ f dom 1 g dom 1 c + d + z ¬ f z = 0 g z = 0 f z + c F z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
258 257 adantrd φ f dom 1 g dom 1 c + d + z ¬ f z = 0 g z = 0 f z + c F z 0 G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
259 166 adantr φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z 0 F z + G z
260 182 recnd φ f dom 1 g dom 1 c + d + z if c d c d
261 228 176 260 addassd φ f dom 1 g dom 1 c + d + z f z + g z + if c d c d = f z + g z + if c d c d
262 261 adantr φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z f z + g z + if c d c d = f z + g z + if c d c d
263 227 237 ltaddrpd φ f dom 1 g dom 1 c + d + z f z < f z + c
264 227 243 263 ltled φ f dom 1 g dom 1 c + d + z f z f z + c
265 letr f z f z + c F z f z f z + c f z + c F z f z F z
266 227 243 187 265 syl3anc φ f dom 1 g dom 1 c + d + z f z f z + c f z + c F z f z F z
267 264 266 mpand φ f dom 1 g dom 1 c + d + z f z + c F z f z F z
268 le2add f z g z + if c d c d F z G z f z F z g z + if c d c d G z f z + g z + if c d c d F z + G z
269 227 183 187 185 268 syl22anc φ f dom 1 g dom 1 c + d + z f z F z g z + if c d c d G z f z + g z + if c d c d F z + G z
270 267 201 269 syl2and φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z f z + g z + if c d c d F z + G z
271 270 imp φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z f z + g z + if c d c d F z + G z
272 262 271 eqbrtrd φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z f z + g z + if c d c d F z + G z
273 259 272 212 syl2anc φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
274 273 ex φ f dom 1 g dom 1 c + d + z f z + c F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
275 274 ad2antrr φ f dom 1 g dom 1 c + d + z ¬ f z = 0 ¬ g z = 0 f z + c F z g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
276 219 221 258 275 ifbothda φ f dom 1 g dom 1 c + d + z ¬ f z = 0 f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
277 145 148 217 276 ifbothda φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
278 277 ralimdva φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
279 ovex f z + c V
280 25 279 ifex if f z = 0 0 f z + c V
281 280 a1i φ z if f z = 0 0 f z + c V
282 eqidd φ z if f z = 0 0 f z + c = z if f z = 0 0 f z + c
283 24 281 18 282 28 ofrfval2 φ z if f z = 0 0 f z + c f F z if f z = 0 0 f z + c F z
284 ovex g z + d V
285 25 284 ifex if g z = 0 0 g z + d V
286 285 a1i φ z if g z = 0 0 g z + d V
287 eqidd φ z if g z = 0 0 g z + d = z if g z = 0 0 g z + d
288 24 286 75 287 80 ofrfval2 φ z if g z = 0 0 g z + d f G z if g z = 0 0 g z + d G z
289 283 288 anbi12d φ z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G z if f z = 0 0 f z + c F z z if g z = 0 0 g z + d G z
290 r19.26 z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z z if f z = 0 0 f z + c F z z if g z = 0 0 g z + d G z
291 289 290 bitr4di φ z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z
292 291 ad2antrr φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G z if f z = 0 0 f z + c F z if g z = 0 0 g z + d G z
293 23 a1i φ f dom 1 g dom 1 c + d + V
294 ovex f z + g z + if c d c d V
295 25 294 ifex if f z + g z = 0 0 f z + g z + if c d c d V
296 295 a1i φ f dom 1 g dom 1 c + d + z if f z + g z = 0 0 f z + g z + if c d c d V
297 ovexd φ f dom 1 g dom 1 c + d + z F z + G z V
298 225 ffnd f dom 1 f Fn
299 298 adantr f dom 1 g dom 1 f Fn
300 299 ad2antlr φ f dom 1 g dom 1 c + d + f Fn
301 173 ffnd g dom 1 g Fn
302 301 adantl f dom 1 g dom 1 g Fn
303 302 ad2antlr φ f dom 1 g dom 1 c + d + g Fn
304 eqidd φ f dom 1 g dom 1 c + d + z f z = f z
305 eqidd φ f dom 1 g dom 1 c + d + z g z = g z
306 300 303 293 293 128 304 305 ofval φ f dom 1 g dom 1 c + d + z f + f g z = f z + g z
307 306 eqeq1d φ f dom 1 g dom 1 c + d + z f + f g z = 0 f z + g z = 0
308 306 oveq1d φ f dom 1 g dom 1 c + d + z f + f g z + if c d c d = f z + g z + if c d c d
309 307 308 ifbieq2d φ f dom 1 g dom 1 c + d + z if f + f g z = 0 0 f + f g z + if c d c d = if f z + g z = 0 0 f z + g z + if c d c d
310 309 mpteq2dva φ f dom 1 g dom 1 c + d + z if f + f g z = 0 0 f + f g z + if c d c d = z if f z + g z = 0 0 f z + g z + if c d c d
311 2 ffnd φ F Fn
312 4 ffnd φ G Fn
313 eqidd φ z F z = F z
314 eqidd φ z G z = G z
315 311 312 24 24 128 313 314 offval φ F + f G = z F z + G z
316 315 ad2antrr φ f dom 1 g dom 1 c + d + F + f G = z F z + G z
317 293 296 297 310 316 ofrfval2 φ f dom 1 g dom 1 c + d + z if f + f g z = 0 0 f + f g z + if c d c d f F + f G z if f z + g z = 0 0 f z + g z + if c d c d F z + G z
318 278 292 317 3imtr4d φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G z if f + f g z = 0 0 f + f g z + if c d c d f F + f G
319 318 imp φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G z if f + f g z = 0 0 f + f g z + if c d c d f F + f G
320 oveq2 y = if c d c d f + f g z + y = f + f g z + if c d c d
321 320 ifeq2d y = if c d c d if f + f g z = 0 0 f + f g z + y = if f + f g z = 0 0 f + f g z + if c d c d
322 321 mpteq2dv y = if c d c d z if f + f g z = 0 0 f + f g z + y = z if f + f g z = 0 0 f + f g z + if c d c d
323 322 breq1d y = if c d c d z if f + f g z = 0 0 f + f g z + y f F + f G z if f + f g z = 0 0 f + f g z + if c d c d f F + f G
324 323 rspcev if c d c d + z if f + f g z = 0 0 f + f g z + if c d c d f F + f G y + z if f + f g z = 0 0 f + f g z + y f F + f G
325 142 319 324 syl2anc φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G y + z if f + f g z = 0 0 f + f g z + y f F + f G
326 325 ex φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G y + z if f + f g z = 0 0 f + f g z + y f F + f G
327 326 rexlimdvva φ f dom 1 g dom 1 c + d + z if f z = 0 0 f z + c f F z if g z = 0 0 g z + d f G y + z if f + f g z = 0 0 f + f g z + y f F + f G
328 140 327 syl5 φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g y + z if f + f g z = 0 0 f + f g z + y f F + f G
329 328 a1dd φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u y + z if f + f g z = 0 0 f + f g z + y f F + f G
330 329 imp31 φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u y + z if f + f g z = 0 0 f + f g z + y f F + f G
331 oveq12 t = 1 f u = 1 g t + u = 1 f + 1 g
332 331 ad2ant2l c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g t + u = 1 f + 1 g
333 134 135 itg1add f dom 1 g dom 1 1 f + f g = 1 f + 1 g
334 333 eqcomd f dom 1 g dom 1 1 f + 1 g = 1 f + f g
335 334 adantl φ f dom 1 g dom 1 1 f + 1 g = 1 f + f g
336 332 335 sylan9eqr φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g t + u = 1 f + f g
337 eqtr s = t + u t + u = 1 f + f g s = 1 f + f g
338 337 ancoms t + u = 1 f + f g s = t + u s = 1 f + f g
339 336 338 sylan φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u s = 1 f + f g
340 fveq1 h = f + f g h z = f + f g z
341 340 eqeq1d h = f + f g h z = 0 f + f g z = 0
342 340 oveq1d h = f + f g h z + y = f + f g z + y
343 341 342 ifbieq2d h = f + f g if h z = 0 0 h z + y = if f + f g z = 0 0 f + f g z + y
344 343 mpteq2dv h = f + f g z if h z = 0 0 h z + y = z if f + f g z = 0 0 f + f g z + y
345 344 breq1d h = f + f g z if h z = 0 0 h z + y f F + f G z if f + f g z = 0 0 f + f g z + y f F + f G
346 345 rexbidv h = f + f g y + z if h z = 0 0 h z + y f F + f G y + z if f + f g z = 0 0 f + f g z + y f F + f G
347 fveq2 h = f + f g 1 h = 1 f + f g
348 347 eqeq2d h = f + f g s = 1 h s = 1 f + f g
349 346 348 anbi12d h = f + f g y + z if h z = 0 0 h z + y f F + f G s = 1 h y + z if f + f g z = 0 0 f + f g z + y f F + f G s = 1 f + f g
350 349 rspcev f + f g dom 1 y + z if f + f g z = 0 0 f + f g z + y f F + f G s = 1 f + f g h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
351 137 330 339 350 syl12anc φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
352 351 exp31 φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
353 352 rexlimdvva φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
354 353 impd φ f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
355 354 exlimdvv φ t u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h
356 133 355 impbid φ h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h t u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
357 eqeq1 x = t x = 1 f t = 1 f
358 357 anbi2d x = t c + z if f z = 0 0 f z + c f F x = 1 f c + z if f z = 0 0 f z + c f F t = 1 f
359 358 rexbidv x = t f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f
360 359 rexab t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
361 eqeq1 x = u x = 1 g u = 1 g
362 361 anbi2d x = u d + z if g z = 0 0 g z + d f G x = 1 g d + z if g z = 0 0 g z + d f G u = 1 g
363 362 rexbidv x = u g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g
364 363 rexab u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u u g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
365 364 anbi2i f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f u g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
366 19.42v u f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f u g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
367 reeanv f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g
368 367 anbi1i f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
369 anass f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
370 368 369 bitr2i f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
371 370 exbii u f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f g dom 1 d + z if g z = 0 0 g z + d f G u = 1 g s = t + u u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
372 365 366 371 3bitr2i f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
373 372 exbii t f dom 1 c + z if f z = 0 0 f z + c f F t = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
374 360 373 bitri t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t u f dom 1 g dom 1 c + z if f z = 0 0 f z + c f F t = 1 f d + z if g z = 0 0 g z + d f G u = 1 g s = t + u
375 356 374 bitr4di φ h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
376 375 abbidv φ s | h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h = s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
377 376 supeq1d φ sup s | h dom 1 y + z if h z = 0 0 h z + y f F + f G s = 1 h * < = sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u * <
378 simpr t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u s = t + u
379 11 sseli t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f t
380 379 ad2antrr t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t
381 73 sseli u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g u
382 381 ad2antlr t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u u
383 380 382 readdcld t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t + u
384 378 383 eqeltrd t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u s
385 384 ex t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u s
386 385 rexlimivv t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u s
387 386 abssi s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
388 387 a1i φ s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
389 156 eqcomi 0 = 0 + 0
390 rspceov 0 x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f 0 x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 0 = 0 + 0 t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 0 = t + u
391 389 390 mp3an3 0 x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f 0 x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 0 = t + u
392 52 102 391 syl2anc φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 0 = t + u
393 eqeq1 s = 0 s = t + u 0 = t + u
394 393 2rexbidv s = 0 t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 0 = t + u
395 25 394 spcev t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g 0 = t + u s t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
396 392 395 syl φ s t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
397 abn0 s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u s t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
398 396 397 sylibr φ s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u
399 60 109 readdcld φ sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
400 simpr φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b = t + u
401 379 ad2antrl φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g t
402 381 ad2antll φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g u
403 60 adantr φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
404 109 adantr φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
405 supxrub x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f t sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
406 62 405 mpan t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f t sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
407 406 ad2antrl φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g t sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * <
408 supxrub x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g u sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
409 110 408 mpan u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g u sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
410 409 ad2antll φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g u sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
411 401 402 403 404 407 410 le2addd φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g t + u sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
412 411 adantr φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u t + u sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
413 400 412 eqbrtrd φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
414 413 ex φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
415 414 rexlimdvva φ t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
416 415 alrimiv φ b t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
417 breq2 a = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < b a b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
418 417 ralbidv a = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b a b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
419 eqeq1 s = b s = t + u b = t + u
420 419 2rexbidv s = b t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u
421 420 ralab b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < b t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
422 418 421 bitrdi a = sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b a b t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * <
423 422 rspcev sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < b t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g b = t + u b sup x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f * < + sup x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g * < a b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b a
424 399 416 423 syl2anc φ a b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b a
425 supxrre s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u a b s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u b a sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u * < = sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u <
426 388 398 424 425 syl3anc φ sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u * < = sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u <
427 132 377 426 3eqtrd φ 2 F + f G = sup s | t x | f dom 1 c + z if f z = 0 0 f z + c f F x = 1 f u x | g dom 1 d + z if g z = 0 0 g z + d f G x = 1 g s = t + u <
428 117 124 427 3eqtr4rd φ 2 F + f G = 2 F + 2 G