Metamath Proof Explorer


Theorem iblcnlem

Description: Expand out the universal quantifier in isibl2 . (Contributed by Mario Carneiro, 6-Aug-2014)

Ref Expression
Hypotheses itgcnlem.r R=2xifxA0BB0
itgcnlem.s S=2xifxA0BB0
itgcnlem.t T=2xifxA0BB0
itgcnlem.u U=2xifxA0BB0
itgcnlem.v φxABV
Assertion iblcnlem φxAB𝐿1xABMblFnRSTU

Proof

Step Hyp Ref Expression
1 itgcnlem.r R=2xifxA0BB0
2 itgcnlem.s S=2xifxA0BB0
3 itgcnlem.t T=2xifxA0BB0
4 itgcnlem.u U=2xifxA0BB0
5 itgcnlem.v φxABV
6 iblmbf xAB𝐿1xABMblFn
7 6 a1i φxAB𝐿1xABMblFn
8 simp1 xABMblFnRSTUxABMblFn
9 8 a1i φxABMblFnRSTUxABMblFn
10 eqid 2xifxA0ifBB0ifBB00=2xifxA0ifBB0ifBB00
11 eqid 2xifxA0ifBB0ifBB00=2xifxA0ifBB0ifBB00
12 eqid 2xifxA0ifBB0ifBB00=2xifxA0ifBB0ifBB00
13 eqid 2xifxA0ifBB0ifBB00=2xifxA0ifBB0ifBB00
14 0cn 0
15 14 elimel ifBB0
16 15 a1i φxAifBB0
17 10 11 12 13 16 iblcnlem1 φxAifBB0𝐿1xAifBB0MblFn2xifxA0ifBB0ifBB002xifxA0ifBB0ifBB002xifxA0ifBB0ifBB002xifxA0ifBB0ifBB00
18 17 adantr φxABMblFnxAifBB0𝐿1xAifBB0MblFn2xifxA0ifBB0ifBB002xifxA0ifBB0ifBB002xifxA0ifBB0ifBB002xifxA0ifBB0ifBB00
19 eqid A=A
20 mbff xABMblFnxAB:domxAB
21 eqid xAB=xAB
22 21 5 dmmptd φdomxAB=A
23 22 feq2d φxAB:domxABxAB:A
24 23 biimpa φxAB:domxABxAB:A
25 20 24 sylan2 φxABMblFnxAB:A
26 21 fmpt xABxAB:A
27 25 26 sylibr φxABMblFnxAB
28 iftrue BifBB0=B
29 28 ralimi xABxAifBB0=B
30 27 29 syl φxABMblFnxAifBB0=B
31 mpteq12 A=AxAifBB0=BxAifBB0=xAB
32 19 30 31 sylancr φxABMblFnxAifBB0=xAB
33 32 eleq1d φxABMblFnxAifBB0𝐿1xAB𝐿1
34 32 eleq1d φxABMblFnxAifBB0MblFnxABMblFn
35 eqid =
36 28 imim2i xABxAifBB0=B
37 36 imp xABxAifBB0=B
38 37 fveq2d xABxAifBB0=B
39 38 ibllem xABifxA0ifBB0ifBB00=ifxA0BB0
40 39 a1d xABxifxA0ifBB0ifBB00=ifxA0BB0
41 40 ralimi2 xABxifxA0ifBB0ifBB00=ifxA0BB0
42 27 41 syl φxABMblFnxifxA0ifBB0ifBB00=ifxA0BB0
43 mpteq12 =xifxA0ifBB0ifBB00=ifxA0BB0xifxA0ifBB0ifBB00=xifxA0BB0
44 35 42 43 sylancr φxABMblFnxifxA0ifBB0ifBB00=xifxA0BB0
45 44 fveq2d φxABMblFn2xifxA0ifBB0ifBB00=2xifxA0BB0
46 45 1 eqtr4di φxABMblFn2xifxA0ifBB0ifBB00=R
47 46 eleq1d φxABMblFn2xifxA0ifBB0ifBB00R
48 38 negeqd xABxAifBB0=B
49 48 ibllem xABifxA0ifBB0ifBB00=ifxA0BB0
50 49 a1d xABxifxA0ifBB0ifBB00=ifxA0BB0
51 50 ralimi2 xABxifxA0ifBB0ifBB00=ifxA0BB0
52 27 51 syl φxABMblFnxifxA0ifBB0ifBB00=ifxA0BB0
53 mpteq12 =xifxA0ifBB0ifBB00=ifxA0BB0xifxA0ifBB0ifBB00=xifxA0BB0
54 35 52 53 sylancr φxABMblFnxifxA0ifBB0ifBB00=xifxA0BB0
55 54 fveq2d φxABMblFn2xifxA0ifBB0ifBB00=2xifxA0BB0
56 55 2 eqtr4di φxABMblFn2xifxA0ifBB0ifBB00=S
57 56 eleq1d φxABMblFn2xifxA0ifBB0ifBB00S
58 47 57 anbi12d φxABMblFn2xifxA0ifBB0ifBB002xifxA0ifBB0ifBB00RS
59 37 fveq2d xABxAifBB0=B
60 59 ibllem xABifxA0ifBB0ifBB00=ifxA0BB0
61 60 a1d xABxifxA0ifBB0ifBB00=ifxA0BB0
62 61 ralimi2 xABxifxA0ifBB0ifBB00=ifxA0BB0
63 27 62 syl φxABMblFnxifxA0ifBB0ifBB00=ifxA0BB0
64 mpteq12 =xifxA0ifBB0ifBB00=ifxA0BB0xifxA0ifBB0ifBB00=xifxA0BB0
65 35 63 64 sylancr φxABMblFnxifxA0ifBB0ifBB00=xifxA0BB0
66 65 fveq2d φxABMblFn2xifxA0ifBB0ifBB00=2xifxA0BB0
67 66 3 eqtr4di φxABMblFn2xifxA0ifBB0ifBB00=T
68 67 eleq1d φxABMblFn2xifxA0ifBB0ifBB00T
69 59 negeqd xABxAifBB0=B
70 69 ibllem xABifxA0ifBB0ifBB00=ifxA0BB0
71 70 a1d xABxifxA0ifBB0ifBB00=ifxA0BB0
72 71 ralimi2 xABxifxA0ifBB0ifBB00=ifxA0BB0
73 27 72 syl φxABMblFnxifxA0ifBB0ifBB00=ifxA0BB0
74 mpteq12 =xifxA0ifBB0ifBB00=ifxA0BB0xifxA0ifBB0ifBB00=xifxA0BB0
75 35 73 74 sylancr φxABMblFnxifxA0ifBB0ifBB00=xifxA0BB0
76 75 fveq2d φxABMblFn2xifxA0ifBB0ifBB00=2xifxA0BB0
77 76 4 eqtr4di φxABMblFn2xifxA0ifBB0ifBB00=U
78 77 eleq1d φxABMblFn2xifxA0ifBB0ifBB00U
79 68 78 anbi12d φxABMblFn2xifxA0ifBB0ifBB002xifxA0ifBB0ifBB00TU
80 34 58 79 3anbi123d φxABMblFnxAifBB0MblFn2xifxA0ifBB0ifBB002xifxA0ifBB0ifBB002xifxA0ifBB0ifBB002xifxA0ifBB0ifBB00xABMblFnRSTU
81 18 33 80 3bitr3d φxABMblFnxAB𝐿1xABMblFnRSTU
82 81 ex φxABMblFnxAB𝐿1xABMblFnRSTU
83 7 9 82 pm5.21ndd φxAB𝐿1xABMblFnRSTU