| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
|
| 2 |
|
ibladdnc.2 |
|
| 3 |
|
ibladdnc.3 |
|
| 4 |
|
ibladdnc.4 |
|
| 5 |
|
ibladdnc.m |
|
| 6 |
|
itgaddnclem.1 |
|
| 7 |
|
itgaddnclem.2 |
|
| 8 |
|
itgaddnclem.3 |
|
| 9 |
|
itgaddnclem.4 |
|
| 10 |
6 7
|
readdcld |
|
| 11 |
1 2 3 4 5
|
ibladdnc |
|
| 12 |
6 7 8 9
|
addge0d |
|
| 13 |
10 11 12
|
itgposval |
|
| 14 |
6 2 8
|
itgposval |
|
| 15 |
7 4 9
|
itgposval |
|
| 16 |
14 15
|
oveq12d |
|
| 17 |
|
iblmbf |
|
| 18 |
2 17
|
syl |
|
| 19 |
18 1
|
mbfdm2 |
|
| 20 |
|
mblss |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
rembl |
|
| 23 |
22
|
a1i |
|
| 24 |
|
elrege0 |
|
| 25 |
6 8 24
|
sylanbrc |
|
| 26 |
|
0e0icopnf |
|
| 27 |
26
|
a1i |
|
| 28 |
25 27
|
ifclda |
|
| 29 |
28
|
adantr |
|
| 30 |
|
eldifn |
|
| 31 |
30
|
adantl |
|
| 32 |
|
iffalse |
|
| 33 |
31 32
|
syl |
|
| 34 |
|
iftrue |
|
| 35 |
34
|
mpteq2ia |
|
| 36 |
35 18
|
eqeltrid |
|
| 37 |
21 23 29 33 36
|
mbfss |
|
| 38 |
28
|
adantr |
|
| 39 |
38
|
fmpttd |
|
| 40 |
6 8
|
iblpos |
|
| 41 |
2 40
|
mpbid |
|
| 42 |
41
|
simprd |
|
| 43 |
|
elrege0 |
|
| 44 |
7 9 43
|
sylanbrc |
|
| 45 |
44 27
|
ifclda |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
fmpttd |
|
| 48 |
7 9
|
iblpos |
|
| 49 |
4 48
|
mpbid |
|
| 50 |
49
|
simprd |
|
| 51 |
37 39 42 47 50
|
itg2addnc |
|
| 52 |
|
reex |
|
| 53 |
52
|
a1i |
|
| 54 |
|
eqidd |
|
| 55 |
|
eqidd |
|
| 56 |
53 38 46 54 55
|
offval2 |
|
| 57 |
|
iftrue |
|
| 58 |
34 57
|
oveq12d |
|
| 59 |
|
iftrue |
|
| 60 |
58 59
|
eqtr4d |
|
| 61 |
|
iffalse |
|
| 62 |
32 61
|
oveq12d |
|
| 63 |
|
00id |
|
| 64 |
62 63
|
eqtrdi |
|
| 65 |
|
iffalse |
|
| 66 |
64 65
|
eqtr4d |
|
| 67 |
60 66
|
pm2.61i |
|
| 68 |
67
|
mpteq2i |
|
| 69 |
56 68
|
eqtrdi |
|
| 70 |
69
|
fveq2d |
|
| 71 |
16 51 70
|
3eqtr2d |
|
| 72 |
13 71
|
eqtr4d |
|