Step |
Hyp |
Ref |
Expression |
1 |
|
ibladdnc.1 |
|
2 |
|
ibladdnc.2 |
|
3 |
|
ibladdnc.3 |
|
4 |
|
ibladdnc.4 |
|
5 |
|
ibladdnc.m |
|
6 |
|
itgaddnclem.1 |
|
7 |
|
itgaddnclem.2 |
|
8 |
|
itgaddnclem.3 |
|
9 |
|
itgaddnclem.4 |
|
10 |
6 7
|
readdcld |
|
11 |
1 2 3 4 5
|
ibladdnc |
|
12 |
6 7 8 9
|
addge0d |
|
13 |
10 11 12
|
itgposval |
|
14 |
6 2 8
|
itgposval |
|
15 |
7 4 9
|
itgposval |
|
16 |
14 15
|
oveq12d |
|
17 |
|
iblmbf |
|
18 |
2 17
|
syl |
|
19 |
18 1
|
mbfdm2 |
|
20 |
|
mblss |
|
21 |
19 20
|
syl |
|
22 |
|
rembl |
|
23 |
22
|
a1i |
|
24 |
|
elrege0 |
|
25 |
6 8 24
|
sylanbrc |
|
26 |
|
0e0icopnf |
|
27 |
26
|
a1i |
|
28 |
25 27
|
ifclda |
|
29 |
28
|
adantr |
|
30 |
|
eldifn |
|
31 |
30
|
adantl |
|
32 |
|
iffalse |
|
33 |
31 32
|
syl |
|
34 |
|
iftrue |
|
35 |
34
|
mpteq2ia |
|
36 |
35 18
|
eqeltrid |
|
37 |
21 23 29 33 36
|
mbfss |
|
38 |
28
|
adantr |
|
39 |
38
|
fmpttd |
|
40 |
6 8
|
iblpos |
|
41 |
2 40
|
mpbid |
|
42 |
41
|
simprd |
|
43 |
|
elrege0 |
|
44 |
7 9 43
|
sylanbrc |
|
45 |
44 27
|
ifclda |
|
46 |
45
|
adantr |
|
47 |
46
|
fmpttd |
|
48 |
7 9
|
iblpos |
|
49 |
4 48
|
mpbid |
|
50 |
49
|
simprd |
|
51 |
37 39 42 47 50
|
itg2addnc |
|
52 |
|
reex |
|
53 |
52
|
a1i |
|
54 |
|
eqidd |
|
55 |
|
eqidd |
|
56 |
53 38 46 54 55
|
offval2 |
|
57 |
|
iftrue |
|
58 |
34 57
|
oveq12d |
|
59 |
|
iftrue |
|
60 |
58 59
|
eqtr4d |
|
61 |
|
iffalse |
|
62 |
32 61
|
oveq12d |
|
63 |
|
00id |
|
64 |
62 63
|
eqtrdi |
|
65 |
|
iffalse |
|
66 |
64 65
|
eqtr4d |
|
67 |
60 66
|
pm2.61i |
|
68 |
67
|
mpteq2i |
|
69 |
56 68
|
eqtrdi |
|
70 |
69
|
fveq2d |
|
71 |
16 51 70
|
3eqtr2d |
|
72 |
13 71
|
eqtr4d |
|