Metamath Proof Explorer


Theorem itgaddnclem1

Description: Lemma for itgaddnc ; cf. itgaddlem1 . (Contributed by Brendan Leahy, 7-Nov-2017)

Ref Expression
Hypotheses ibladdnc.1 φ x A B V
ibladdnc.2 φ x A B 𝐿 1
ibladdnc.3 φ x A C V
ibladdnc.4 φ x A C 𝐿 1
ibladdnc.m φ x A B + C MblFn
itgaddnclem.1 φ x A B
itgaddnclem.2 φ x A C
itgaddnclem.3 φ x A 0 B
itgaddnclem.4 φ x A 0 C
Assertion itgaddnclem1 φ A B + C dx = A B dx + A C dx

Proof

Step Hyp Ref Expression
1 ibladdnc.1 φ x A B V
2 ibladdnc.2 φ x A B 𝐿 1
3 ibladdnc.3 φ x A C V
4 ibladdnc.4 φ x A C 𝐿 1
5 ibladdnc.m φ x A B + C MblFn
6 itgaddnclem.1 φ x A B
7 itgaddnclem.2 φ x A C
8 itgaddnclem.3 φ x A 0 B
9 itgaddnclem.4 φ x A 0 C
10 6 7 readdcld φ x A B + C
11 1 2 3 4 5 ibladdnc φ x A B + C 𝐿 1
12 6 7 8 9 addge0d φ x A 0 B + C
13 10 11 12 itgposval φ A B + C dx = 2 x if x A B + C 0
14 6 2 8 itgposval φ A B dx = 2 x if x A B 0
15 7 4 9 itgposval φ A C dx = 2 x if x A C 0
16 14 15 oveq12d φ A B dx + A C dx = 2 x if x A B 0 + 2 x if x A C 0
17 iblmbf x A B 𝐿 1 x A B MblFn
18 2 17 syl φ x A B MblFn
19 18 1 mbfdm2 φ A dom vol
20 mblss A dom vol A
21 19 20 syl φ A
22 rembl dom vol
23 22 a1i φ dom vol
24 elrege0 B 0 +∞ B 0 B
25 6 8 24 sylanbrc φ x A B 0 +∞
26 0e0icopnf 0 0 +∞
27 26 a1i φ ¬ x A 0 0 +∞
28 25 27 ifclda φ if x A B 0 0 +∞
29 28 adantr φ x A if x A B 0 0 +∞
30 eldifn x A ¬ x A
31 30 adantl φ x A ¬ x A
32 iffalse ¬ x A if x A B 0 = 0
33 31 32 syl φ x A if x A B 0 = 0
34 iftrue x A if x A B 0 = B
35 34 mpteq2ia x A if x A B 0 = x A B
36 35 18 eqeltrid φ x A if x A B 0 MblFn
37 21 23 29 33 36 mbfss φ x if x A B 0 MblFn
38 28 adantr φ x if x A B 0 0 +∞
39 38 fmpttd φ x if x A B 0 : 0 +∞
40 6 8 iblpos φ x A B 𝐿 1 x A B MblFn 2 x if x A B 0
41 2 40 mpbid φ x A B MblFn 2 x if x A B 0
42 41 simprd φ 2 x if x A B 0
43 elrege0 C 0 +∞ C 0 C
44 7 9 43 sylanbrc φ x A C 0 +∞
45 44 27 ifclda φ if x A C 0 0 +∞
46 45 adantr φ x if x A C 0 0 +∞
47 46 fmpttd φ x if x A C 0 : 0 +∞
48 7 9 iblpos φ x A C 𝐿 1 x A C MblFn 2 x if x A C 0
49 4 48 mpbid φ x A C MblFn 2 x if x A C 0
50 49 simprd φ 2 x if x A C 0
51 37 39 42 47 50 itg2addnc φ 2 x if x A B 0 + f x if x A C 0 = 2 x if x A B 0 + 2 x if x A C 0
52 reex V
53 52 a1i φ V
54 eqidd φ x if x A B 0 = x if x A B 0
55 eqidd φ x if x A C 0 = x if x A C 0
56 53 38 46 54 55 offval2 φ x if x A B 0 + f x if x A C 0 = x if x A B 0 + if x A C 0
57 iftrue x A if x A C 0 = C
58 34 57 oveq12d x A if x A B 0 + if x A C 0 = B + C
59 iftrue x A if x A B + C 0 = B + C
60 58 59 eqtr4d x A if x A B 0 + if x A C 0 = if x A B + C 0
61 iffalse ¬ x A if x A C 0 = 0
62 32 61 oveq12d ¬ x A if x A B 0 + if x A C 0 = 0 + 0
63 00id 0 + 0 = 0
64 62 63 eqtrdi ¬ x A if x A B 0 + if x A C 0 = 0
65 iffalse ¬ x A if x A B + C 0 = 0
66 64 65 eqtr4d ¬ x A if x A B 0 + if x A C 0 = if x A B + C 0
67 60 66 pm2.61i if x A B 0 + if x A C 0 = if x A B + C 0
68 67 mpteq2i x if x A B 0 + if x A C 0 = x if x A B + C 0
69 56 68 eqtrdi φ x if x A B 0 + f x if x A C 0 = x if x A B + C 0
70 69 fveq2d φ 2 x if x A B 0 + f x if x A C 0 = 2 x if x A B + C 0
71 16 51 70 3eqtr2d φ A B dx + A C dx = 2 x if x A B + C 0
72 13 71 eqtr4d φ A B + C dx = A B dx + A C dx