| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ibladdnc.1 |  |-  ( ( ph /\ x e. A ) -> B e. V ) | 
						
							| 2 |  | ibladdnc.2 |  |-  ( ph -> ( x e. A |-> B ) e. L^1 ) | 
						
							| 3 |  | ibladdnc.3 |  |-  ( ( ph /\ x e. A ) -> C e. V ) | 
						
							| 4 |  | ibladdnc.4 |  |-  ( ph -> ( x e. A |-> C ) e. L^1 ) | 
						
							| 5 |  | ibladdnc.m |  |-  ( ph -> ( x e. A |-> ( B + C ) ) e. MblFn ) | 
						
							| 6 |  | itgaddnclem.1 |  |-  ( ( ph /\ x e. A ) -> B e. RR ) | 
						
							| 7 |  | itgaddnclem.2 |  |-  ( ( ph /\ x e. A ) -> C e. RR ) | 
						
							| 8 |  | itgaddnclem.3 |  |-  ( ( ph /\ x e. A ) -> 0 <_ B ) | 
						
							| 9 |  | itgaddnclem.4 |  |-  ( ( ph /\ x e. A ) -> 0 <_ C ) | 
						
							| 10 | 6 7 | readdcld |  |-  ( ( ph /\ x e. A ) -> ( B + C ) e. RR ) | 
						
							| 11 | 1 2 3 4 5 | ibladdnc |  |-  ( ph -> ( x e. A |-> ( B + C ) ) e. L^1 ) | 
						
							| 12 | 6 7 8 9 | addge0d |  |-  ( ( ph /\ x e. A ) -> 0 <_ ( B + C ) ) | 
						
							| 13 | 10 11 12 | itgposval |  |-  ( ph -> S. A ( B + C ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) | 
						
							| 14 | 6 2 8 | itgposval |  |-  ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) | 
						
							| 15 | 7 4 9 | itgposval |  |-  ( ph -> S. A C _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) | 
						
							| 16 | 14 15 | oveq12d |  |-  ( ph -> ( S. A B _d x + S. A C _d x ) = ( ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) ) | 
						
							| 17 |  | iblmbf |  |-  ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 18 | 2 17 | syl |  |-  ( ph -> ( x e. A |-> B ) e. MblFn ) | 
						
							| 19 | 18 1 | mbfdm2 |  |-  ( ph -> A e. dom vol ) | 
						
							| 20 |  | mblss |  |-  ( A e. dom vol -> A C_ RR ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> A C_ RR ) | 
						
							| 22 |  | rembl |  |-  RR e. dom vol | 
						
							| 23 | 22 | a1i |  |-  ( ph -> RR e. dom vol ) | 
						
							| 24 |  | elrege0 |  |-  ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) | 
						
							| 25 | 6 8 24 | sylanbrc |  |-  ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) | 
						
							| 26 |  | 0e0icopnf |  |-  0 e. ( 0 [,) +oo ) | 
						
							| 27 | 26 | a1i |  |-  ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) | 
						
							| 28 | 25 27 | ifclda |  |-  ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 30 |  | eldifn |  |-  ( x e. ( RR \ A ) -> -. x e. A ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> -. x e. A ) | 
						
							| 32 |  | iffalse |  |-  ( -. x e. A -> if ( x e. A , B , 0 ) = 0 ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ph /\ x e. ( RR \ A ) ) -> if ( x e. A , B , 0 ) = 0 ) | 
						
							| 34 |  | iftrue |  |-  ( x e. A -> if ( x e. A , B , 0 ) = B ) | 
						
							| 35 | 34 | mpteq2ia |  |-  ( x e. A |-> if ( x e. A , B , 0 ) ) = ( x e. A |-> B ) | 
						
							| 36 | 35 18 | eqeltrid |  |-  ( ph -> ( x e. A |-> if ( x e. A , B , 0 ) ) e. MblFn ) | 
						
							| 37 | 21 23 29 33 36 | mbfss |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) e. MblFn ) | 
						
							| 38 | 28 | adantr |  |-  ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 39 | 38 | fmpttd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 40 | 6 8 | iblpos |  |-  ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) | 
						
							| 41 | 2 40 | mpbid |  |-  ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) | 
						
							| 42 | 41 | simprd |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) | 
						
							| 43 |  | elrege0 |  |-  ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) | 
						
							| 44 | 7 9 43 | sylanbrc |  |-  ( ( ph /\ x e. A ) -> C e. ( 0 [,) +oo ) ) | 
						
							| 45 | 44 27 | ifclda |  |-  ( ph -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ x e. RR ) -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) | 
						
							| 47 | 46 | fmpttd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) : RR --> ( 0 [,) +oo ) ) | 
						
							| 48 | 7 9 | iblpos |  |-  ( ph -> ( ( x e. A |-> C ) e. L^1 <-> ( ( x e. A |-> C ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) ) ) | 
						
							| 49 | 4 48 | mpbid |  |-  ( ph -> ( ( x e. A |-> C ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) ) | 
						
							| 50 | 49 | simprd |  |-  ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) | 
						
							| 51 | 37 39 42 47 50 | itg2addnc |  |-  ( ph -> ( S.2 ` ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) = ( ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) ) | 
						
							| 52 |  | reex |  |-  RR e. _V | 
						
							| 53 | 52 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 54 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) | 
						
							| 55 |  | eqidd |  |-  ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) = ( x e. RR |-> if ( x e. A , C , 0 ) ) ) | 
						
							| 56 | 53 38 46 54 55 | offval2 |  |-  ( ph -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) ) ) | 
						
							| 57 |  | iftrue |  |-  ( x e. A -> if ( x e. A , C , 0 ) = C ) | 
						
							| 58 | 34 57 | oveq12d |  |-  ( x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = ( B + C ) ) | 
						
							| 59 |  | iftrue |  |-  ( x e. A -> if ( x e. A , ( B + C ) , 0 ) = ( B + C ) ) | 
						
							| 60 | 58 59 | eqtr4d |  |-  ( x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) ) | 
						
							| 61 |  | iffalse |  |-  ( -. x e. A -> if ( x e. A , C , 0 ) = 0 ) | 
						
							| 62 | 32 61 | oveq12d |  |-  ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = ( 0 + 0 ) ) | 
						
							| 63 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 64 | 62 63 | eqtrdi |  |-  ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = 0 ) | 
						
							| 65 |  | iffalse |  |-  ( -. x e. A -> if ( x e. A , ( B + C ) , 0 ) = 0 ) | 
						
							| 66 | 64 65 | eqtr4d |  |-  ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) ) | 
						
							| 67 | 60 66 | pm2.61i |  |-  ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) | 
						
							| 68 | 67 | mpteq2i |  |-  ( x e. RR |-> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) | 
						
							| 69 | 56 68 | eqtrdi |  |-  ( ph -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) | 
						
							| 70 | 69 | fveq2d |  |-  ( ph -> ( S.2 ` ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) | 
						
							| 71 | 16 51 70 | 3eqtr2d |  |-  ( ph -> ( S. A B _d x + S. A C _d x ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) | 
						
							| 72 | 13 71 | eqtr4d |  |-  ( ph -> S. A ( B + C ) _d x = ( S. A B _d x + S. A C _d x ) ) |