| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ibladdnc.1 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 2 |
|
ibladdnc.2 |
|- ( ph -> ( x e. A |-> B ) e. L^1 ) |
| 3 |
|
ibladdnc.3 |
|- ( ( ph /\ x e. A ) -> C e. V ) |
| 4 |
|
ibladdnc.4 |
|- ( ph -> ( x e. A |-> C ) e. L^1 ) |
| 5 |
|
ibladdnc.m |
|- ( ph -> ( x e. A |-> ( B + C ) ) e. MblFn ) |
| 6 |
|
itgaddnclem.1 |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
| 7 |
|
itgaddnclem.2 |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
| 8 |
|
itgaddnclem.3 |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
| 9 |
|
itgaddnclem.4 |
|- ( ( ph /\ x e. A ) -> 0 <_ C ) |
| 10 |
6 7
|
readdcld |
|- ( ( ph /\ x e. A ) -> ( B + C ) e. RR ) |
| 11 |
1 2 3 4 5
|
ibladdnc |
|- ( ph -> ( x e. A |-> ( B + C ) ) e. L^1 ) |
| 12 |
6 7 8 9
|
addge0d |
|- ( ( ph /\ x e. A ) -> 0 <_ ( B + C ) ) |
| 13 |
10 11 12
|
itgposval |
|- ( ph -> S. A ( B + C ) _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) |
| 14 |
6 2 8
|
itgposval |
|- ( ph -> S. A B _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) ) |
| 15 |
7 4 9
|
itgposval |
|- ( ph -> S. A C _d x = ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) |
| 16 |
14 15
|
oveq12d |
|- ( ph -> ( S. A B _d x + S. A C _d x ) = ( ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) ) |
| 17 |
|
iblmbf |
|- ( ( x e. A |-> B ) e. L^1 -> ( x e. A |-> B ) e. MblFn ) |
| 18 |
2 17
|
syl |
|- ( ph -> ( x e. A |-> B ) e. MblFn ) |
| 19 |
18 1
|
mbfdm2 |
|- ( ph -> A e. dom vol ) |
| 20 |
|
mblss |
|- ( A e. dom vol -> A C_ RR ) |
| 21 |
19 20
|
syl |
|- ( ph -> A C_ RR ) |
| 22 |
|
rembl |
|- RR e. dom vol |
| 23 |
22
|
a1i |
|- ( ph -> RR e. dom vol ) |
| 24 |
|
elrege0 |
|- ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) ) |
| 25 |
6 8 24
|
sylanbrc |
|- ( ( ph /\ x e. A ) -> B e. ( 0 [,) +oo ) ) |
| 26 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
| 27 |
26
|
a1i |
|- ( ( ph /\ -. x e. A ) -> 0 e. ( 0 [,) +oo ) ) |
| 28 |
25 27
|
ifclda |
|- ( ph -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 29 |
28
|
adantr |
|- ( ( ph /\ x e. A ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 30 |
|
eldifn |
|- ( x e. ( RR \ A ) -> -. x e. A ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ x e. ( RR \ A ) ) -> -. x e. A ) |
| 32 |
|
iffalse |
|- ( -. x e. A -> if ( x e. A , B , 0 ) = 0 ) |
| 33 |
31 32
|
syl |
|- ( ( ph /\ x e. ( RR \ A ) ) -> if ( x e. A , B , 0 ) = 0 ) |
| 34 |
|
iftrue |
|- ( x e. A -> if ( x e. A , B , 0 ) = B ) |
| 35 |
34
|
mpteq2ia |
|- ( x e. A |-> if ( x e. A , B , 0 ) ) = ( x e. A |-> B ) |
| 36 |
35 18
|
eqeltrid |
|- ( ph -> ( x e. A |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 37 |
21 23 29 33 36
|
mbfss |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) e. MblFn ) |
| 38 |
28
|
adantr |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , B , 0 ) e. ( 0 [,) +oo ) ) |
| 39 |
38
|
fmpttd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 40 |
6 8
|
iblpos |
|- ( ph -> ( ( x e. A |-> B ) e. L^1 <-> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) ) |
| 41 |
2 40
|
mpbid |
|- ( ph -> ( ( x e. A |-> B ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) ) |
| 42 |
41
|
simprd |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) e. RR ) |
| 43 |
|
elrege0 |
|- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
| 44 |
7 9 43
|
sylanbrc |
|- ( ( ph /\ x e. A ) -> C e. ( 0 [,) +oo ) ) |
| 45 |
44 27
|
ifclda |
|- ( ph -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) |
| 46 |
45
|
adantr |
|- ( ( ph /\ x e. RR ) -> if ( x e. A , C , 0 ) e. ( 0 [,) +oo ) ) |
| 47 |
46
|
fmpttd |
|- ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) : RR --> ( 0 [,) +oo ) ) |
| 48 |
7 9
|
iblpos |
|- ( ph -> ( ( x e. A |-> C ) e. L^1 <-> ( ( x e. A |-> C ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) ) ) |
| 49 |
4 48
|
mpbid |
|- ( ph -> ( ( x e. A |-> C ) e. MblFn /\ ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) ) |
| 50 |
49
|
simprd |
|- ( ph -> ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) e. RR ) |
| 51 |
37 39 42 47 50
|
itg2addnc |
|- ( ph -> ( S.2 ` ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) = ( ( S.2 ` ( x e. RR |-> if ( x e. A , B , 0 ) ) ) + ( S.2 ` ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) ) |
| 52 |
|
reex |
|- RR e. _V |
| 53 |
52
|
a1i |
|- ( ph -> RR e. _V ) |
| 54 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( x e. A , B , 0 ) ) = ( x e. RR |-> if ( x e. A , B , 0 ) ) ) |
| 55 |
|
eqidd |
|- ( ph -> ( x e. RR |-> if ( x e. A , C , 0 ) ) = ( x e. RR |-> if ( x e. A , C , 0 ) ) ) |
| 56 |
53 38 46 54 55
|
offval2 |
|- ( ph -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) ) ) |
| 57 |
|
iftrue |
|- ( x e. A -> if ( x e. A , C , 0 ) = C ) |
| 58 |
34 57
|
oveq12d |
|- ( x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = ( B + C ) ) |
| 59 |
|
iftrue |
|- ( x e. A -> if ( x e. A , ( B + C ) , 0 ) = ( B + C ) ) |
| 60 |
58 59
|
eqtr4d |
|- ( x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) ) |
| 61 |
|
iffalse |
|- ( -. x e. A -> if ( x e. A , C , 0 ) = 0 ) |
| 62 |
32 61
|
oveq12d |
|- ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = ( 0 + 0 ) ) |
| 63 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 64 |
62 63
|
eqtrdi |
|- ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = 0 ) |
| 65 |
|
iffalse |
|- ( -. x e. A -> if ( x e. A , ( B + C ) , 0 ) = 0 ) |
| 66 |
64 65
|
eqtr4d |
|- ( -. x e. A -> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) ) |
| 67 |
60 66
|
pm2.61i |
|- ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) = if ( x e. A , ( B + C ) , 0 ) |
| 68 |
67
|
mpteq2i |
|- ( x e. RR |-> ( if ( x e. A , B , 0 ) + if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) |
| 69 |
56 68
|
eqtrdi |
|- ( ph -> ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) = ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) |
| 70 |
69
|
fveq2d |
|- ( ph -> ( S.2 ` ( ( x e. RR |-> if ( x e. A , B , 0 ) ) oF + ( x e. RR |-> if ( x e. A , C , 0 ) ) ) ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) |
| 71 |
16 51 70
|
3eqtr2d |
|- ( ph -> ( S. A B _d x + S. A C _d x ) = ( S.2 ` ( x e. RR |-> if ( x e. A , ( B + C ) , 0 ) ) ) ) |
| 72 |
13 71
|
eqtr4d |
|- ( ph -> S. A ( B + C ) _d x = ( S. A B _d x + S. A C _d x ) ) |