Metamath Proof Explorer


Theorem ismbfcn2

Description: A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 13-Aug-2014)

Ref Expression
Hypothesis ismbfcn2.1 φ x A B
Assertion ismbfcn2 φ x A B MblFn x A B MblFn x A B MblFn

Proof

Step Hyp Ref Expression
1 ismbfcn2.1 φ x A B
2 1 fmpttd φ x A B : A
3 ismbfcn x A B : A x A B MblFn x A B MblFn x A B MblFn
4 2 3 syl φ x A B MblFn x A B MblFn x A B MblFn
5 ref :
6 5 a1i φ :
7 6 1 cofmpt φ x A B = x A B
8 7 eleq1d φ x A B MblFn x A B MblFn
9 imf :
10 9 a1i φ :
11 10 1 cofmpt φ x A B = x A B
12 11 eleq1d φ x A B MblFn x A B MblFn
13 8 12 anbi12d φ x A B MblFn x A B MblFn x A B MblFn x A B MblFn
14 4 13 bitrd φ x A B MblFn x A B MblFn x A B MblFn