| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoreelrnab.1 |
|- I = ( [,) " ( RR X. RR ) ) |
| 2 |
|
df-ima |
|- ( [,) " ( RR X. RR ) ) = ran ( [,) |` ( RR X. RR ) ) |
| 3 |
1 2
|
eqtri |
|- I = ran ( [,) |` ( RR X. RR ) ) |
| 4 |
3
|
eleq2i |
|- ( X e. I <-> X e. ran ( [,) |` ( RR X. RR ) ) ) |
| 5 |
|
icoreresf |
|- ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR |
| 6 |
|
ffn |
|- ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> ( [,) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
| 7 |
|
ovelrn |
|- ( ( [,) |` ( RR X. RR ) ) Fn ( RR X. RR ) -> ( X e. ran ( [,) |` ( RR X. RR ) ) <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) ) |
| 8 |
5 6 7
|
mp2b |
|- ( X e. ran ( [,) |` ( RR X. RR ) ) <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) |
| 9 |
4 8
|
bitri |
|- ( X e. I <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) |
| 10 |
|
ovres |
|- ( ( a e. RR /\ b e. RR ) -> ( a ( [,) |` ( RR X. RR ) ) b ) = ( a [,) b ) ) |
| 11 |
10
|
eqeq2d |
|- ( ( a e. RR /\ b e. RR ) -> ( X = ( a ( [,) |` ( RR X. RR ) ) b ) <-> X = ( a [,) b ) ) ) |
| 12 |
11
|
2rexbiia |
|- ( E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) <-> E. a e. RR E. b e. RR X = ( a [,) b ) ) |
| 13 |
9 12
|
bitri |
|- ( X e. I <-> E. a e. RR E. b e. RR X = ( a [,) b ) ) |
| 14 |
|
icoreval |
|- ( ( a e. RR /\ b e. RR ) -> ( a [,) b ) = { z e. RR | ( a <_ z /\ z < b ) } ) |
| 15 |
14
|
eqeq2d |
|- ( ( a e. RR /\ b e. RR ) -> ( X = ( a [,) b ) <-> X = { z e. RR | ( a <_ z /\ z < b ) } ) ) |
| 16 |
15
|
2rexbiia |
|- ( E. a e. RR E. b e. RR X = ( a [,) b ) <-> E. a e. RR E. b e. RR X = { z e. RR | ( a <_ z /\ z < b ) } ) |
| 17 |
13 16
|
bitri |
|- ( X e. I <-> E. a e. RR E. b e. RR X = { z e. RR | ( a <_ z /\ z < b ) } ) |