Step |
Hyp |
Ref |
Expression |
1 |
|
icoreelrnab.1 |
|- I = ( [,) " ( RR X. RR ) ) |
2 |
|
df-ima |
|- ( [,) " ( RR X. RR ) ) = ran ( [,) |` ( RR X. RR ) ) |
3 |
1 2
|
eqtri |
|- I = ran ( [,) |` ( RR X. RR ) ) |
4 |
3
|
eleq2i |
|- ( X e. I <-> X e. ran ( [,) |` ( RR X. RR ) ) ) |
5 |
|
icoreresf |
|- ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR |
6 |
|
ffn |
|- ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> ( [,) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
7 |
|
ovelrn |
|- ( ( [,) |` ( RR X. RR ) ) Fn ( RR X. RR ) -> ( X e. ran ( [,) |` ( RR X. RR ) ) <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) ) |
8 |
5 6 7
|
mp2b |
|- ( X e. ran ( [,) |` ( RR X. RR ) ) <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) |
9 |
4 8
|
bitri |
|- ( X e. I <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) |
10 |
|
ovres |
|- ( ( a e. RR /\ b e. RR ) -> ( a ( [,) |` ( RR X. RR ) ) b ) = ( a [,) b ) ) |
11 |
10
|
eqeq2d |
|- ( ( a e. RR /\ b e. RR ) -> ( X = ( a ( [,) |` ( RR X. RR ) ) b ) <-> X = ( a [,) b ) ) ) |
12 |
11
|
2rexbiia |
|- ( E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) <-> E. a e. RR E. b e. RR X = ( a [,) b ) ) |
13 |
9 12
|
bitri |
|- ( X e. I <-> E. a e. RR E. b e. RR X = ( a [,) b ) ) |
14 |
|
icoreval |
|- ( ( a e. RR /\ b e. RR ) -> ( a [,) b ) = { z e. RR | ( a <_ z /\ z < b ) } ) |
15 |
14
|
eqeq2d |
|- ( ( a e. RR /\ b e. RR ) -> ( X = ( a [,) b ) <-> X = { z e. RR | ( a <_ z /\ z < b ) } ) ) |
16 |
15
|
2rexbiia |
|- ( E. a e. RR E. b e. RR X = ( a [,) b ) <-> E. a e. RR E. b e. RR X = { z e. RR | ( a <_ z /\ z < b ) } ) |
17 |
13 16
|
bitri |
|- ( X e. I <-> E. a e. RR E. b e. RR X = { z e. RR | ( a <_ z /\ z < b ) } ) |