| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoreelrnab.1 |  |-  I = ( [,) " ( RR X. RR ) ) | 
						
							| 2 |  | df-ima |  |-  ( [,) " ( RR X. RR ) ) = ran ( [,) |` ( RR X. RR ) ) | 
						
							| 3 | 1 2 | eqtri |  |-  I = ran ( [,) |` ( RR X. RR ) ) | 
						
							| 4 | 3 | eleq2i |  |-  ( X e. I <-> X e. ran ( [,) |` ( RR X. RR ) ) ) | 
						
							| 5 |  | icoreresf |  |-  ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR | 
						
							| 6 |  | ffn |  |-  ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> ( [,) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) | 
						
							| 7 |  | ovelrn |  |-  ( ( [,) |` ( RR X. RR ) ) Fn ( RR X. RR ) -> ( X e. ran ( [,) |` ( RR X. RR ) ) <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) ) | 
						
							| 8 | 5 6 7 | mp2b |  |-  ( X e. ran ( [,) |` ( RR X. RR ) ) <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) | 
						
							| 9 | 4 8 | bitri |  |-  ( X e. I <-> E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) ) | 
						
							| 10 |  | ovres |  |-  ( ( a e. RR /\ b e. RR ) -> ( a ( [,) |` ( RR X. RR ) ) b ) = ( a [,) b ) ) | 
						
							| 11 | 10 | eqeq2d |  |-  ( ( a e. RR /\ b e. RR ) -> ( X = ( a ( [,) |` ( RR X. RR ) ) b ) <-> X = ( a [,) b ) ) ) | 
						
							| 12 | 11 | 2rexbiia |  |-  ( E. a e. RR E. b e. RR X = ( a ( [,) |` ( RR X. RR ) ) b ) <-> E. a e. RR E. b e. RR X = ( a [,) b ) ) | 
						
							| 13 | 9 12 | bitri |  |-  ( X e. I <-> E. a e. RR E. b e. RR X = ( a [,) b ) ) | 
						
							| 14 |  | icoreval |  |-  ( ( a e. RR /\ b e. RR ) -> ( a [,) b ) = { z e. RR | ( a <_ z /\ z < b ) } ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( a e. RR /\ b e. RR ) -> ( X = ( a [,) b ) <-> X = { z e. RR | ( a <_ z /\ z < b ) } ) ) | 
						
							| 16 | 15 | 2rexbiia |  |-  ( E. a e. RR E. b e. RR X = ( a [,) b ) <-> E. a e. RR E. b e. RR X = { z e. RR | ( a <_ z /\ z < b ) } ) | 
						
							| 17 | 13 16 | bitri |  |-  ( X e. I <-> E. a e. RR E. b e. RR X = { z e. RR | ( a <_ z /\ z < b ) } ) |