| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoreelrnab.1 | ⊢ 𝐼  =  ( [,)  “  ( ℝ  ×  ℝ ) ) | 
						
							| 2 |  | df-ima | ⊢ ( [,)  “  ( ℝ  ×  ℝ ) )  =  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 3 | 1 2 | eqtri | ⊢ 𝐼  =  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 4 | 3 | eleq2i | ⊢ ( 𝑋  ∈  𝐼  ↔  𝑋  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 5 |  | icoreresf | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ | 
						
							| 6 |  | ffn | ⊢ ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ  →  ( [,)  ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ ) ) | 
						
							| 7 |  | ovelrn | ⊢ ( ( [,)  ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ )  →  ( 𝑋  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑏 ) ) ) | 
						
							| 8 | 5 6 7 | mp2b | ⊢ ( 𝑋  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑏 ) ) | 
						
							| 9 | 4 8 | bitri | ⊢ ( 𝑋  ∈  𝐼  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑏 ) ) | 
						
							| 10 |  | ovres | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑎 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑏 )  =  ( 𝑎 [,) 𝑏 ) ) | 
						
							| 11 | 10 | eqeq2d | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑋  =  ( 𝑎 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑏 )  ↔  𝑋  =  ( 𝑎 [,) 𝑏 ) ) ) | 
						
							| 12 | 11 | 2rexbiia | ⊢ ( ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝑏 )  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 [,) 𝑏 ) ) | 
						
							| 13 | 9 12 | bitri | ⊢ ( 𝑋  ∈  𝐼  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 [,) 𝑏 ) ) | 
						
							| 14 |  | icoreval | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑎 [,) 𝑏 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  →  ( 𝑋  =  ( 𝑎 [,) 𝑏 )  ↔  𝑋  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 16 | 15 | 2rexbiia | ⊢ ( ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  ( 𝑎 [,) 𝑏 )  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 17 | 13 16 | bitri | ⊢ ( 𝑋  ∈  𝐼  ↔  ∃ 𝑎  ∈  ℝ ∃ 𝑏  ∈  ℝ 𝑋  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) |