Metamath Proof Explorer


Theorem icoreelrnab

Description: Elementhood in the set of closed-below, open-above intervals of reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis icoreelrnab.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
Assertion icoreelrnab ( 𝑋𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎𝑧𝑧 < 𝑏 ) } )

Proof

Step Hyp Ref Expression
1 icoreelrnab.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
2 df-ima ( [,) “ ( ℝ × ℝ ) ) = ran ( [,) ↾ ( ℝ × ℝ ) )
3 1 2 eqtri 𝐼 = ran ( [,) ↾ ( ℝ × ℝ ) )
4 3 eleq2i ( 𝑋𝐼𝑋 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) )
5 icoreresf ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ
6 ffn ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ → ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) )
7 ovelrn ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) → ( 𝑋 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ) )
8 5 6 7 mp2b ( 𝑋 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) )
9 4 8 bitri ( 𝑋𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) )
10 ovres ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) = ( 𝑎 [,) 𝑏 ) )
11 10 eqeq2d ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ↔ 𝑋 = ( 𝑎 [,) 𝑏 ) ) )
12 11 2rexbiia ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 [,) 𝑏 ) )
13 9 12 bitri ( 𝑋𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 [,) 𝑏 ) )
14 icoreval ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 [,) 𝑏 ) = { 𝑧 ∈ ℝ ∣ ( 𝑎𝑧𝑧 < 𝑏 ) } )
15 14 eqeq2d ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑋 = ( 𝑎 [,) 𝑏 ) ↔ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎𝑧𝑧 < 𝑏 ) } ) )
16 15 2rexbiia ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 [,) 𝑏 ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎𝑧𝑧 < 𝑏 ) } )
17 13 16 bitri ( 𝑋𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎𝑧𝑧 < 𝑏 ) } )