| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoreelrnab.1 |
⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) |
| 2 |
|
df-ima |
⊢ ( [,) “ ( ℝ × ℝ ) ) = ran ( [,) ↾ ( ℝ × ℝ ) ) |
| 3 |
1 2
|
eqtri |
⊢ 𝐼 = ran ( [,) ↾ ( ℝ × ℝ ) ) |
| 4 |
3
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐼 ↔ 𝑋 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ) |
| 5 |
|
icoreresf |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ |
| 6 |
|
ffn |
⊢ ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ → ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ) |
| 7 |
|
ovelrn |
⊢ ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) → ( 𝑋 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ) ) |
| 8 |
5 6 7
|
mp2b |
⊢ ( 𝑋 ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ) |
| 9 |
4 8
|
bitri |
⊢ ( 𝑋 ∈ 𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ) |
| 10 |
|
ovres |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) = ( 𝑎 [,) 𝑏 ) ) |
| 11 |
10
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ↔ 𝑋 = ( 𝑎 [,) 𝑏 ) ) ) |
| 12 |
11
|
2rexbiia |
⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 ( [,) ↾ ( ℝ × ℝ ) ) 𝑏 ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 [,) 𝑏 ) ) |
| 13 |
9 12
|
bitri |
⊢ ( 𝑋 ∈ 𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 [,) 𝑏 ) ) |
| 14 |
|
icoreval |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 [,) 𝑏 ) = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 15 |
14
|
eqeq2d |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑋 = ( 𝑎 [,) 𝑏 ) ↔ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 16 |
15
|
2rexbiia |
⊢ ( ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = ( 𝑎 [,) 𝑏 ) ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 17 |
13 16
|
bitri |
⊢ ( 𝑋 ∈ 𝐼 ↔ ∃ 𝑎 ∈ ℝ ∃ 𝑏 ∈ ℝ 𝑋 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |