Step |
Hyp |
Ref |
Expression |
1 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
2 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
3 |
2
|
ixxf |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
4 |
|
ffn |
⊢ ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,) Fn ( ℝ* × ℝ* ) ) |
5 |
|
fnssresb |
⊢ ( [,) Fn ( ℝ* × ℝ* ) → ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ↔ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) ) |
6 |
3 4 5
|
mp2b |
⊢ ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ↔ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) |
7 |
1 6
|
mpbir |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) |
8 |
|
eqid |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( [,) ↾ ( ℝ × ℝ ) ) |
9 |
8
|
icorempo |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
10 |
9
|
rneqi |
⊢ ran ( [,) ↾ ( ℝ × ℝ ) ) = ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
11 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ⊆ ℝ |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
12
|
elpw2 |
⊢ ( { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ↔ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ⊆ ℝ ) |
14 |
11 13
|
mpbir |
⊢ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ |
15 |
14
|
rgen2w |
⊢ ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ |
16 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
17 |
16
|
rnmpo |
⊢ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) = { 𝑙 ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } } |
18 |
17
|
abeq2i |
⊢ ( 𝑙 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
19 |
|
simpl |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ) |
20 |
|
simpr |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
21 |
19 20
|
r19.29d2r |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
22 |
|
eleq1 |
⊢ ( 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → ( 𝑙 ∈ 𝒫 ℝ ↔ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ) ) |
23 |
22
|
biimparc |
⊢ ( ( { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) |
24 |
23
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) ) |
25 |
24
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) |
26 |
21 25
|
syl |
⊢ ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) |
27 |
26
|
ex |
⊢ ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → 𝑙 ∈ 𝒫 ℝ ) ) |
28 |
18 27
|
syl5bi |
⊢ ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ → ( 𝑙 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) ) |
29 |
28
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ∈ 𝒫 ℝ → ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ⊆ 𝒫 ℝ ) |
30 |
15 29
|
ax-mp |
⊢ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ⊆ 𝒫 ℝ |
31 |
10 30
|
eqsstri |
⊢ ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ |
32 |
|
df-f |
⊢ ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ ↔ ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ∧ ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ ) ) |
33 |
7 31 32
|
mpbir2an |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ |