| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexpssxrxp | ⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 2 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 3 | 2 | ixxf | ⊢ [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 4 |  | ffn | ⊢ ( [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  [,)  Fn  ( ℝ*  ×  ℝ* ) ) | 
						
							| 5 |  | fnssresb | ⊢ ( [,)  Fn  ( ℝ*  ×  ℝ* )  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ )  ↔  ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) ) ) | 
						
							| 6 | 3 4 5 | mp2b | ⊢ ( ( [,)  ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ )  ↔  ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) ) | 
						
							| 7 | 1 6 | mpbir | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ ) | 
						
							| 8 |  | eqid | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 9 | 8 | icorempo | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 10 | 9 | rneqi | ⊢ ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 11 |  | ssrab2 | ⊢ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ⊆  ℝ | 
						
							| 12 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 13 | 12 | elpw2 | ⊢ ( { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ↔  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ⊆  ℝ ) | 
						
							| 14 | 11 13 | mpbir | ⊢ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ | 
						
							| 15 | 14 | rgen2w | ⊢ ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ | 
						
							| 16 |  | eqid | ⊢ ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 17 | 16 | rnmpo | ⊢ ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  =  { 𝑙  ∣  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } } | 
						
							| 18 | 17 | eqabri | ⊢ ( 𝑙  ∈  ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  ↔  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 19 |  | simpl | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ ) | 
						
							| 20 |  | simpr | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 21 | 19 20 | r19.29d2r | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ ( { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  ( 𝑙  ∈  𝒫  ℝ  ↔  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ ) ) | 
						
							| 23 | 22 | biimparc | ⊢ ( ( { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  𝑙  ∈  𝒫  ℝ ) | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  𝑙  ∈  𝒫  ℝ ) ) | 
						
							| 25 | 24 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ ( { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  𝑙  ∈  𝒫  ℝ ) | 
						
							| 26 | 21 25 | syl | ⊢ ( ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  ∧  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  𝑙  ∈  𝒫  ℝ ) | 
						
							| 27 | 26 | ex | ⊢ ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  →  ( ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝑙  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  𝑙  ∈  𝒫  ℝ ) ) | 
						
							| 28 | 18 27 | biimtrid | ⊢ ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  →  ( 𝑙  ∈  ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  →  𝑙  ∈  𝒫  ℝ ) ) | 
						
							| 29 | 28 | ssrdv | ⊢ ( ∀ 𝑥  ∈  ℝ ∀ 𝑦  ∈  ℝ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ∈  𝒫  ℝ  →  ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  ⊆  𝒫  ℝ ) | 
						
							| 30 | 15 29 | ax-mp | ⊢ ran  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  ⊆  𝒫  ℝ | 
						
							| 31 | 10 30 | eqsstri | ⊢ ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ⊆  𝒫  ℝ | 
						
							| 32 |  | df-f | ⊢ ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ  ↔  ( ( [,)  ↾  ( ℝ  ×  ℝ ) )  Fn  ( ℝ  ×  ℝ )  ∧  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ⊆  𝒫  ℝ ) ) | 
						
							| 33 | 7 31 32 | mpbir2an | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ |