Metamath Proof Explorer


Theorem icoreresf

Description: Closed-below, open-above intervals of reals map to subsets of reals. (Contributed by ML, 25-Jul-2020)

Ref Expression
Assertion icoreresf ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ

Proof

Step Hyp Ref Expression
1 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
2 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
3 2 ixxf [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
4 ffn ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → [,) Fn ( ℝ* × ℝ* ) )
5 fnssresb ( [,) Fn ( ℝ* × ℝ* ) → ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ↔ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) ) )
6 3 4 5 mp2b ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ↔ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) )
7 1 6 mpbir ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ )
8 eqid ( [,) ↾ ( ℝ × ℝ ) ) = ( [,) ↾ ( ℝ × ℝ ) )
9 8 icorempo ( [,) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
10 9 rneqi ran ( [,) ↾ ( ℝ × ℝ ) ) = ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
11 ssrab2 { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ⊆ ℝ
12 reex ℝ ∈ V
13 12 elpw2 ( { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ↔ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ⊆ ℝ )
14 11 13 mpbir { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ
15 14 rgen2w 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ
16 eqid ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
17 16 rnmpo ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) = { 𝑙 ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } }
18 17 abeq2i ( 𝑙 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
19 simpl ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ )
20 simpr ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
21 19 20 r19.29d2r ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) )
22 eleq1 ( 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } → ( 𝑙 ∈ 𝒫 ℝ ↔ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ) )
23 22 biimparc ( ( { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ )
24 23 a1i ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) )
25 24 rexlimivv ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ( { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ )
26 21 25 syl ( ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ )
27 26 ex ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑙 = { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } → 𝑙 ∈ 𝒫 ℝ ) )
28 18 27 syl5bi ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ → ( 𝑙 ∈ ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) → 𝑙 ∈ 𝒫 ℝ ) )
29 28 ssrdv ( ∀ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ℝ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ∈ 𝒫 ℝ → ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) ⊆ 𝒫 ℝ )
30 15 29 ax-mp ran ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } ) ⊆ 𝒫 ℝ
31 10 30 eqsstri ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ
32 df-f ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ ↔ ( ( [,) ↾ ( ℝ × ℝ ) ) Fn ( ℝ × ℝ ) ∧ ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ ) )
33 7 31 32 mpbir2an ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ