Step |
Hyp |
Ref |
Expression |
1 |
|
ovres |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ( [,) ↾ ( ℝ × ℝ ) ) 𝐵 ) = ( 𝐴 [,) 𝐵 ) ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≤ 𝑧 ↔ 𝐴 ≤ 𝑧 ) ) |
3 |
2
|
anbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } = { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
5 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 < 𝑦 ↔ 𝑧 < 𝐵 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ↔ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑦 = 𝐵 → { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } = { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) } ) |
8 |
|
eqid |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( [,) ↾ ( ℝ × ℝ ) ) |
9 |
8
|
icorempo |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
10 |
|
reex |
⊢ ℝ ∈ V |
11 |
10
|
rabex |
⊢ { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) } ∈ V |
12 |
4 7 9 11
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ( [,) ↾ ( ℝ × ℝ ) ) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) } ) |
13 |
1 12
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) } ) |