Metamath Proof Explorer


Theorem icoreval

Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020)

Ref Expression
Assertion icoreval ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } )

Proof

Step Hyp Ref Expression
1 ovres ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ( [,) ↾ ( ℝ × ℝ ) ) 𝐵 ) = ( 𝐴 [,) 𝐵 ) )
2 breq1 ( 𝑥 = 𝐴 → ( 𝑥𝑧𝐴𝑧 ) )
3 2 anbi1d ( 𝑥 = 𝐴 → ( ( 𝑥𝑧𝑧 < 𝑦 ) ↔ ( 𝐴𝑧𝑧 < 𝑦 ) ) )
4 3 rabbidv ( 𝑥 = 𝐴 → { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } = { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝑦 ) } )
5 breq2 ( 𝑦 = 𝐵 → ( 𝑧 < 𝑦𝑧 < 𝐵 ) )
6 5 anbi2d ( 𝑦 = 𝐵 → ( ( 𝐴𝑧𝑧 < 𝑦 ) ↔ ( 𝐴𝑧𝑧 < 𝐵 ) ) )
7 6 rabbidv ( 𝑦 = 𝐵 → { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝑦 ) } = { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } )
8 eqid ( [,) ↾ ( ℝ × ℝ ) ) = ( [,) ↾ ( ℝ × ℝ ) )
9 8 icorempo ( [,) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
10 reex ℝ ∈ V
11 10 rabex { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } ∈ V
12 4 7 9 11 ovmpo ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ( [,) ↾ ( ℝ × ℝ ) ) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } )
13 1 12 eqtr3d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } )