| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovres | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝐵 )  =  ( 𝐴 [,) 𝐵 ) ) | 
						
							| 2 |  | breq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ≤  𝑧  ↔  𝐴  ≤  𝑧 ) ) | 
						
							| 3 | 2 | anbi1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 )  ↔  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝑦 ) ) ) | 
						
							| 4 | 3 | rabbidv | ⊢ ( 𝑥  =  𝐴  →  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  =  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑧  <  𝑦  ↔  𝑧  <  𝐵 ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝑦 )  ↔  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) ) ) | 
						
							| 7 | 6 | rabbidv | ⊢ ( 𝑦  =  𝐵  →  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  =  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) } ) | 
						
							| 8 |  | eqid | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 9 | 8 | icorempo | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 10 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 11 | 10 | rabex | ⊢ { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) }  ∈  V | 
						
							| 12 | 4 7 9 11 | ovmpo | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 ( [,)  ↾  ( ℝ  ×  ℝ ) ) 𝐵 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) } ) | 
						
							| 13 | 1 12 | eqtr3d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,) 𝐵 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) } ) |