Step |
Hyp |
Ref |
Expression |
1 |
|
ovres |
|- ( ( A e. RR /\ B e. RR ) -> ( A ( [,) |` ( RR X. RR ) ) B ) = ( A [,) B ) ) |
2 |
|
breq1 |
|- ( x = A -> ( x <_ z <-> A <_ z ) ) |
3 |
2
|
anbi1d |
|- ( x = A -> ( ( x <_ z /\ z < y ) <-> ( A <_ z /\ z < y ) ) ) |
4 |
3
|
rabbidv |
|- ( x = A -> { z e. RR | ( x <_ z /\ z < y ) } = { z e. RR | ( A <_ z /\ z < y ) } ) |
5 |
|
breq2 |
|- ( y = B -> ( z < y <-> z < B ) ) |
6 |
5
|
anbi2d |
|- ( y = B -> ( ( A <_ z /\ z < y ) <-> ( A <_ z /\ z < B ) ) ) |
7 |
6
|
rabbidv |
|- ( y = B -> { z e. RR | ( A <_ z /\ z < y ) } = { z e. RR | ( A <_ z /\ z < B ) } ) |
8 |
|
eqid |
|- ( [,) |` ( RR X. RR ) ) = ( [,) |` ( RR X. RR ) ) |
9 |
8
|
icorempo |
|- ( [,) |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> { z e. RR | ( x <_ z /\ z < y ) } ) |
10 |
|
reex |
|- RR e. _V |
11 |
10
|
rabex |
|- { z e. RR | ( A <_ z /\ z < B ) } e. _V |
12 |
4 7 9 11
|
ovmpo |
|- ( ( A e. RR /\ B e. RR ) -> ( A ( [,) |` ( RR X. RR ) ) B ) = { z e. RR | ( A <_ z /\ z < B ) } ) |
13 |
1 12
|
eqtr3d |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) = { z e. RR | ( A <_ z /\ z < B ) } ) |