| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovres |  |-  ( ( A e. RR /\ B e. RR ) -> ( A ( [,) |` ( RR X. RR ) ) B ) = ( A [,) B ) ) | 
						
							| 2 |  | breq1 |  |-  ( x = A -> ( x <_ z <-> A <_ z ) ) | 
						
							| 3 | 2 | anbi1d |  |-  ( x = A -> ( ( x <_ z /\ z < y ) <-> ( A <_ z /\ z < y ) ) ) | 
						
							| 4 | 3 | rabbidv |  |-  ( x = A -> { z e. RR | ( x <_ z /\ z < y ) } = { z e. RR | ( A <_ z /\ z < y ) } ) | 
						
							| 5 |  | breq2 |  |-  ( y = B -> ( z < y <-> z < B ) ) | 
						
							| 6 | 5 | anbi2d |  |-  ( y = B -> ( ( A <_ z /\ z < y ) <-> ( A <_ z /\ z < B ) ) ) | 
						
							| 7 | 6 | rabbidv |  |-  ( y = B -> { z e. RR | ( A <_ z /\ z < y ) } = { z e. RR | ( A <_ z /\ z < B ) } ) | 
						
							| 8 |  | eqid |  |-  ( [,) |` ( RR X. RR ) ) = ( [,) |` ( RR X. RR ) ) | 
						
							| 9 | 8 | icorempo |  |-  ( [,) |` ( RR X. RR ) ) = ( x e. RR , y e. RR |-> { z e. RR | ( x <_ z /\ z < y ) } ) | 
						
							| 10 |  | reex |  |-  RR e. _V | 
						
							| 11 | 10 | rabex |  |-  { z e. RR | ( A <_ z /\ z < B ) } e. _V | 
						
							| 12 | 4 7 9 11 | ovmpo |  |-  ( ( A e. RR /\ B e. RR ) -> ( A ( [,) |` ( RR X. RR ) ) B ) = { z e. RR | ( A <_ z /\ z < B ) } ) | 
						
							| 13 | 1 12 | eqtr3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) = { z e. RR | ( A <_ z /\ z < B ) } ) |