Metamath Proof Explorer


Theorem icoreval

Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020)

Ref Expression
Assertion icoreval A B A B = z | A z z < B

Proof

Step Hyp Ref Expression
1 ovres A B A . 2 B = A B
2 breq1 x = A x z A z
3 2 anbi1d x = A x z z < y A z z < y
4 3 rabbidv x = A z | x z z < y = z | A z z < y
5 breq2 y = B z < y z < B
6 5 anbi2d y = B A z z < y A z z < B
7 6 rabbidv y = B z | A z z < y = z | A z z < B
8 eqid . 2 = . 2
9 8 icorempo . 2 = x , y z | x z z < y
10 reex V
11 10 rabex z | A z z < B V
12 4 7 9 11 ovmpo A B A . 2 B = z | A z z < B
13 1 12 eqtr3d A B A B = z | A z z < B