| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icorempo.1 |
⊢ 𝐹 = ( [,) ↾ ( ℝ × ℝ ) ) |
| 2 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 3 |
2
|
reseq1i |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↾ ( ℝ × ℝ ) ) |
| 4 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
| 5 |
|
resmpo |
⊢ ( ( ℝ ⊆ ℝ* ∧ ℝ ⊆ ℝ* ) → ( ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
| 6 |
4 4 5
|
mp2an |
⊢ ( ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 7 |
3 6
|
eqtri |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) |
| 9 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } |
| 10 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } |
| 11 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ↔ ( 𝑧 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 12 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 13 |
|
nltmnf |
⊢ ( 𝑥 ∈ ℝ* → ¬ 𝑥 < -∞ ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑥 ∈ ℝ → ¬ 𝑥 < -∞ ) |
| 15 |
|
renemnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≠ -∞ ) |
| 16 |
15
|
neneqd |
⊢ ( 𝑥 ∈ ℝ → ¬ 𝑥 = -∞ ) |
| 17 |
14 16
|
jca |
⊢ ( 𝑥 ∈ ℝ → ( ¬ 𝑥 < -∞ ∧ ¬ 𝑥 = -∞ ) ) |
| 18 |
|
pm4.56 |
⊢ ( ( ¬ 𝑥 < -∞ ∧ ¬ 𝑥 = -∞ ) ↔ ¬ ( 𝑥 < -∞ ∨ 𝑥 = -∞ ) ) |
| 19 |
17 18
|
sylib |
⊢ ( 𝑥 ∈ ℝ → ¬ ( 𝑥 < -∞ ∨ 𝑥 = -∞ ) ) |
| 20 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 21 |
|
xrleloe |
⊢ ( ( 𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( 𝑥 ≤ -∞ ↔ ( 𝑥 < -∞ ∨ 𝑥 = -∞ ) ) ) |
| 22 |
12 20 21
|
sylancl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ≤ -∞ ↔ ( 𝑥 < -∞ ∨ 𝑥 = -∞ ) ) ) |
| 23 |
19 22
|
mtbird |
⊢ ( 𝑥 ∈ ℝ → ¬ 𝑥 ≤ -∞ ) |
| 24 |
|
breq2 |
⊢ ( 𝑧 = -∞ → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ≤ -∞ ) ) |
| 25 |
24
|
notbid |
⊢ ( 𝑧 = -∞ → ( ¬ 𝑥 ≤ 𝑧 ↔ ¬ 𝑥 ≤ -∞ ) ) |
| 26 |
23 25
|
syl5ibrcom |
⊢ ( 𝑥 ∈ ℝ → ( 𝑧 = -∞ → ¬ 𝑥 ≤ 𝑧 ) ) |
| 27 |
26
|
con2d |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ≤ 𝑧 → ¬ 𝑧 = -∞ ) ) |
| 28 |
|
rexr |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℝ* ) |
| 29 |
|
pnfnlt |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) |
| 30 |
|
breq1 |
⊢ ( 𝑧 = +∞ → ( 𝑧 < 𝑦 ↔ +∞ < 𝑦 ) ) |
| 31 |
30
|
notbid |
⊢ ( 𝑧 = +∞ → ( ¬ 𝑧 < 𝑦 ↔ ¬ +∞ < 𝑦 ) ) |
| 32 |
29 31
|
syl5ibrcom |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑧 = +∞ → ¬ 𝑧 < 𝑦 ) ) |
| 33 |
32
|
con2d |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑧 < 𝑦 → ¬ 𝑧 = +∞ ) ) |
| 34 |
28 33
|
syl |
⊢ ( 𝑦 ∈ ℝ → ( 𝑧 < 𝑦 → ¬ 𝑧 = +∞ ) ) |
| 35 |
27 34
|
im2anan9 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) → ( ¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞ ) ) ) |
| 36 |
35
|
anim2d |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) → ( 𝑧 ∈ ℝ* ∧ ( ¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞ ) ) ) ) |
| 37 |
|
renepnf |
⊢ ( 𝑧 ∈ ℝ → 𝑧 ≠ +∞ ) |
| 38 |
37
|
neneqd |
⊢ ( 𝑧 ∈ ℝ → ¬ 𝑧 = +∞ ) |
| 39 |
38
|
pm4.71i |
⊢ ( 𝑧 ∈ ℝ ↔ ( 𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞ ) ) |
| 40 |
|
xrnemnf |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞ ) ↔ ( 𝑧 ∈ ℝ ∨ 𝑧 = +∞ ) ) |
| 41 |
40
|
anbi1i |
⊢ ( ( ( 𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞ ) ∧ ¬ 𝑧 = +∞ ) ↔ ( ( 𝑧 ∈ ℝ ∨ 𝑧 = +∞ ) ∧ ¬ 𝑧 = +∞ ) ) |
| 42 |
|
df-ne |
⊢ ( 𝑧 ≠ -∞ ↔ ¬ 𝑧 = -∞ ) |
| 43 |
42
|
anbi2i |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞ ) ↔ ( 𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞ ) ) |
| 44 |
43
|
anbi1i |
⊢ ( ( ( 𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞ ) ∧ ¬ 𝑧 = +∞ ) ↔ ( ( 𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞ ) ∧ ¬ 𝑧 = +∞ ) ) |
| 45 |
|
pm5.61 |
⊢ ( ( ( 𝑧 ∈ ℝ ∨ 𝑧 = +∞ ) ∧ ¬ 𝑧 = +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞ ) ) |
| 46 |
41 44 45
|
3bitr3i |
⊢ ( ( ( 𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞ ) ∧ ¬ 𝑧 = +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ ¬ 𝑧 = +∞ ) ) |
| 47 |
|
anass |
⊢ ( ( ( 𝑧 ∈ ℝ* ∧ ¬ 𝑧 = -∞ ) ∧ ¬ 𝑧 = +∞ ) ↔ ( 𝑧 ∈ ℝ* ∧ ( ¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞ ) ) ) |
| 48 |
39 46 47
|
3bitr2ri |
⊢ ( ( 𝑧 ∈ ℝ* ∧ ( ¬ 𝑧 = -∞ ∧ ¬ 𝑧 = +∞ ) ) ↔ 𝑧 ∈ ℝ ) |
| 49 |
36 48
|
imbitrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑧 ∈ ℝ* ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) → 𝑧 ∈ ℝ ) ) |
| 50 |
11 49
|
biimtrid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → 𝑧 ∈ ℝ ) ) |
| 51 |
11
|
simprbi |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) |
| 52 |
51
|
a1i |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 53 |
50 52
|
jcad |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → ( 𝑧 ∈ ℝ ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) ) ) |
| 54 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) ) ) |
| 55 |
53 54
|
imbitrrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
| 56 |
|
rabss2 |
⊢ ( ℝ ⊆ ℝ* → { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ⊆ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 57 |
4 56
|
ax-mp |
⊢ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ⊆ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } |
| 58 |
57
|
sseli |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } → 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 59 |
55 58
|
impbid1 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑧 ∈ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ↔ 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) ) |
| 60 |
8 9 10 59
|
eqrd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } = { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 61 |
60
|
mpoeq3ia |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 62 |
1 7 61
|
3eqtri |
⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 𝑧 ∈ ℝ ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |