| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icorempo.1 | ⊢ 𝐹  =  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 2 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 3 | 2 | reseq1i | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 4 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 5 |  | resmpo | ⊢ ( ( ℝ  ⊆  ℝ*  ∧  ℝ  ⊆  ℝ* )  →  ( ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) ) | 
						
							| 6 | 4 4 5 | mp2an | ⊢ ( ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 7 | 3 6 | eqtri | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 8 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ ) | 
						
							| 9 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } | 
						
							| 10 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } | 
						
							| 11 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ↔  ( 𝑧  ∈  ℝ*  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) ) ) | 
						
							| 12 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 13 |  | nltmnf | ⊢ ( 𝑥  ∈  ℝ*  →  ¬  𝑥  <  -∞ ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ¬  𝑥  <  -∞ ) | 
						
							| 15 |  | renemnf | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ≠  -∞ ) | 
						
							| 16 | 15 | neneqd | ⊢ ( 𝑥  ∈  ℝ  →  ¬  𝑥  =  -∞ ) | 
						
							| 17 | 14 16 | jca | ⊢ ( 𝑥  ∈  ℝ  →  ( ¬  𝑥  <  -∞  ∧  ¬  𝑥  =  -∞ ) ) | 
						
							| 18 |  | pm4.56 | ⊢ ( ( ¬  𝑥  <  -∞  ∧  ¬  𝑥  =  -∞ )  ↔  ¬  ( 𝑥  <  -∞  ∨  𝑥  =  -∞ ) ) | 
						
							| 19 | 17 18 | sylib | ⊢ ( 𝑥  ∈  ℝ  →  ¬  ( 𝑥  <  -∞  ∨  𝑥  =  -∞ ) ) | 
						
							| 20 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 21 |  | xrleloe | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  -∞  ∈  ℝ* )  →  ( 𝑥  ≤  -∞  ↔  ( 𝑥  <  -∞  ∨  𝑥  =  -∞ ) ) ) | 
						
							| 22 | 12 20 21 | sylancl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ≤  -∞  ↔  ( 𝑥  <  -∞  ∨  𝑥  =  -∞ ) ) ) | 
						
							| 23 | 19 22 | mtbird | ⊢ ( 𝑥  ∈  ℝ  →  ¬  𝑥  ≤  -∞ ) | 
						
							| 24 |  | breq2 | ⊢ ( 𝑧  =  -∞  →  ( 𝑥  ≤  𝑧  ↔  𝑥  ≤  -∞ ) ) | 
						
							| 25 | 24 | notbid | ⊢ ( 𝑧  =  -∞  →  ( ¬  𝑥  ≤  𝑧  ↔  ¬  𝑥  ≤  -∞ ) ) | 
						
							| 26 | 23 25 | syl5ibrcom | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑧  =  -∞  →  ¬  𝑥  ≤  𝑧 ) ) | 
						
							| 27 | 26 | con2d | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  ≤  𝑧  →  ¬  𝑧  =  -∞ ) ) | 
						
							| 28 |  | rexr | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* ) | 
						
							| 29 |  | pnfnlt | ⊢ ( 𝑦  ∈  ℝ*  →  ¬  +∞  <  𝑦 ) | 
						
							| 30 |  | breq1 | ⊢ ( 𝑧  =  +∞  →  ( 𝑧  <  𝑦  ↔  +∞  <  𝑦 ) ) | 
						
							| 31 | 30 | notbid | ⊢ ( 𝑧  =  +∞  →  ( ¬  𝑧  <  𝑦  ↔  ¬  +∞  <  𝑦 ) ) | 
						
							| 32 | 29 31 | syl5ibrcom | ⊢ ( 𝑦  ∈  ℝ*  →  ( 𝑧  =  +∞  →  ¬  𝑧  <  𝑦 ) ) | 
						
							| 33 | 32 | con2d | ⊢ ( 𝑦  ∈  ℝ*  →  ( 𝑧  <  𝑦  →  ¬  𝑧  =  +∞ ) ) | 
						
							| 34 | 28 33 | syl | ⊢ ( 𝑦  ∈  ℝ  →  ( 𝑧  <  𝑦  →  ¬  𝑧  =  +∞ ) ) | 
						
							| 35 | 27 34 | im2anan9 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 )  →  ( ¬  𝑧  =  -∞  ∧  ¬  𝑧  =  +∞ ) ) ) | 
						
							| 36 | 35 | anim2d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑧  ∈  ℝ*  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) )  →  ( 𝑧  ∈  ℝ*  ∧  ( ¬  𝑧  =  -∞  ∧  ¬  𝑧  =  +∞ ) ) ) ) | 
						
							| 37 |  | renepnf | ⊢ ( 𝑧  ∈  ℝ  →  𝑧  ≠  +∞ ) | 
						
							| 38 | 37 | neneqd | ⊢ ( 𝑧  ∈  ℝ  →  ¬  𝑧  =  +∞ ) | 
						
							| 39 | 38 | pm4.71i | ⊢ ( 𝑧  ∈  ℝ  ↔  ( 𝑧  ∈  ℝ  ∧  ¬  𝑧  =  +∞ ) ) | 
						
							| 40 |  | xrnemnf | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  𝑧  ≠  -∞ )  ↔  ( 𝑧  ∈  ℝ  ∨  𝑧  =  +∞ ) ) | 
						
							| 41 | 40 | anbi1i | ⊢ ( ( ( 𝑧  ∈  ℝ*  ∧  𝑧  ≠  -∞ )  ∧  ¬  𝑧  =  +∞ )  ↔  ( ( 𝑧  ∈  ℝ  ∨  𝑧  =  +∞ )  ∧  ¬  𝑧  =  +∞ ) ) | 
						
							| 42 |  | df-ne | ⊢ ( 𝑧  ≠  -∞  ↔  ¬  𝑧  =  -∞ ) | 
						
							| 43 | 42 | anbi2i | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  𝑧  ≠  -∞ )  ↔  ( 𝑧  ∈  ℝ*  ∧  ¬  𝑧  =  -∞ ) ) | 
						
							| 44 | 43 | anbi1i | ⊢ ( ( ( 𝑧  ∈  ℝ*  ∧  𝑧  ≠  -∞ )  ∧  ¬  𝑧  =  +∞ )  ↔  ( ( 𝑧  ∈  ℝ*  ∧  ¬  𝑧  =  -∞ )  ∧  ¬  𝑧  =  +∞ ) ) | 
						
							| 45 |  | pm5.61 | ⊢ ( ( ( 𝑧  ∈  ℝ  ∨  𝑧  =  +∞ )  ∧  ¬  𝑧  =  +∞ )  ↔  ( 𝑧  ∈  ℝ  ∧  ¬  𝑧  =  +∞ ) ) | 
						
							| 46 | 41 44 45 | 3bitr3i | ⊢ ( ( ( 𝑧  ∈  ℝ*  ∧  ¬  𝑧  =  -∞ )  ∧  ¬  𝑧  =  +∞ )  ↔  ( 𝑧  ∈  ℝ  ∧  ¬  𝑧  =  +∞ ) ) | 
						
							| 47 |  | anass | ⊢ ( ( ( 𝑧  ∈  ℝ*  ∧  ¬  𝑧  =  -∞ )  ∧  ¬  𝑧  =  +∞ )  ↔  ( 𝑧  ∈  ℝ*  ∧  ( ¬  𝑧  =  -∞  ∧  ¬  𝑧  =  +∞ ) ) ) | 
						
							| 48 | 39 46 47 | 3bitr2ri | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ( ¬  𝑧  =  -∞  ∧  ¬  𝑧  =  +∞ ) )  ↔  𝑧  ∈  ℝ ) | 
						
							| 49 | 36 48 | imbitrdi | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( 𝑧  ∈  ℝ*  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) )  →  𝑧  ∈  ℝ ) ) | 
						
							| 50 | 11 49 | biimtrid | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  𝑧  ∈  ℝ ) ) | 
						
							| 51 | 11 | simprbi | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) ) | 
						
							| 52 | 51 | a1i | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) ) ) | 
						
							| 53 | 50 52 | jcad | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  ( 𝑧  ∈  ℝ  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) ) ) ) | 
						
							| 54 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) ) ) | 
						
							| 55 | 53 54 | imbitrrdi | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) ) | 
						
							| 56 |  | rabss2 | ⊢ ( ℝ  ⊆  ℝ*  →  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ⊆  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 57 | 4 56 | ax-mp | ⊢ { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ⊆  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } | 
						
							| 58 | 57 | sseli | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  →  𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 59 | 55 58 | impbid1 | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑧  ∈  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) ) | 
						
							| 60 | 8 9 10 59 | eqrd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) }  =  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 61 | 60 | mpoeq3ia | ⊢ ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } )  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 62 | 1 7 61 | 3eqtri | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 𝑧  ∈  ℝ  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) |