| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isbasisrelowl.1 |
⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) |
| 2 |
|
simplr1 |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → 𝑐 ∈ ℝ ) |
| 3 |
|
simpll2 |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → 𝑏 ∈ ℝ ) |
| 4 |
|
nfv |
⊢ Ⅎ 𝑧 𝑎 ∈ ℝ |
| 5 |
|
nfv |
⊢ Ⅎ 𝑧 𝑏 ∈ ℝ |
| 6 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } |
| 7 |
6
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } |
| 8 |
4 5 7
|
nf3an |
⊢ Ⅎ 𝑧 ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑧 𝑐 ∈ ℝ |
| 10 |
|
nfv |
⊢ Ⅎ 𝑧 𝑑 ∈ ℝ |
| 11 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } |
| 12 |
11
|
nfeq2 |
⊢ Ⅎ 𝑧 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } |
| 13 |
9 10 12
|
nf3an |
⊢ Ⅎ 𝑧 ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) |
| 14 |
8 13
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) |
| 16 |
14 15
|
nfan |
⊢ Ⅎ 𝑧 ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑥 ∩ 𝑦 ) |
| 18 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } |
| 19 |
|
simp3 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) → 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 20 |
|
simp3 |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) |
| 21 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦 ) ) |
| 22 |
|
eleq2 |
⊢ ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 23 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) |
| 24 |
22 23
|
bitrdi |
⊢ ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } → ( 𝑧 ∈ 𝑥 ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) ) |
| 25 |
24
|
anbi1d |
⊢ ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } → ( ( 𝑧 ∈ 𝑥 ∧ 𝑧 ∈ 𝑦 ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 26 |
21 25
|
bitrid |
⊢ ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 27 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) |
| 28 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) |
| 29 |
27 28
|
bitrdi |
⊢ ( 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } → ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 30 |
29
|
anbi2d |
⊢ ( 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } → ( ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ 𝑧 ∈ 𝑦 ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 31 |
26 30
|
sylan9bb |
⊢ ( ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 32 |
|
an4 |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ↔ ( ( 𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 33 |
|
anidm |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ↔ 𝑧 ∈ ℝ ) |
| 34 |
33
|
anbi1i |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ 𝑧 ∈ ℝ ) ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 35 |
32 34
|
bitri |
⊢ ( ( ( 𝑧 ∈ ℝ ∧ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 36 |
31 35
|
bitrdi |
⊢ ( ( 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 37 |
19 20 36
|
syl2an |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 39 |
|
simpl |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) → 𝑧 ∈ ℝ ) |
| 40 |
|
simprrl |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) → 𝑐 ≤ 𝑧 ) |
| 41 |
|
simprlr |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) → 𝑧 < 𝑏 ) |
| 42 |
39 40 41
|
jca32 |
⊢ ( ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) → ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) |
| 43 |
38 42
|
biimtrdi |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) → ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) ) |
| 44 |
|
3simpa |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
| 45 |
|
3simpa |
⊢ ( ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) → ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) |
| 46 |
44 45
|
anim12i |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) → ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ) |
| 47 |
|
letr |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑧 ) → 𝑎 ≤ 𝑧 ) ) |
| 48 |
47
|
3expia |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑧 ∈ ℝ → ( ( 𝑎 ≤ 𝑐 ∧ 𝑐 ≤ 𝑧 ) → 𝑎 ≤ 𝑧 ) ) ) |
| 49 |
48
|
exp4a |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑧 ∈ ℝ → ( 𝑎 ≤ 𝑐 → ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ) ) ) |
| 50 |
49
|
ad2ant2r |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( 𝑧 ∈ ℝ → ( 𝑎 ≤ 𝑐 → ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ) ) ) |
| 51 |
|
ltletr |
⊢ ( ( 𝑧 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( ( 𝑧 < 𝑏 ∧ 𝑏 ≤ 𝑑 ) → 𝑧 < 𝑑 ) ) |
| 52 |
51
|
3coml |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑧 < 𝑏 ∧ 𝑏 ≤ 𝑑 ) → 𝑧 < 𝑑 ) ) |
| 53 |
52
|
expcomd |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( 𝑏 ≤ 𝑑 → ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) |
| 54 |
53
|
3expia |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑑 ∈ ℝ ) → ( 𝑧 ∈ ℝ → ( 𝑏 ≤ 𝑑 → ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) ) |
| 55 |
54
|
ad2ant2l |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( 𝑧 ∈ ℝ → ( 𝑏 ≤ 𝑑 → ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) ) |
| 56 |
50 55
|
jcad |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( 𝑧 ∈ ℝ → ( ( 𝑎 ≤ 𝑐 → ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ) ∧ ( 𝑏 ≤ 𝑑 → ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) ) ) |
| 57 |
|
anim12 |
⊢ ( ( ( 𝑎 ≤ 𝑐 → ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ) ∧ ( 𝑏 ≤ 𝑑 → ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) → ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) → ( ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ∧ ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) ) |
| 58 |
56 57
|
syl6 |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( 𝑧 ∈ ℝ → ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) → ( ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ∧ ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) ) ) |
| 59 |
58
|
com23 |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) → ( 𝑧 ∈ ℝ → ( ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ∧ ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) ) ) ) |
| 60 |
|
anim12 |
⊢ ( ( ( 𝑐 ≤ 𝑧 → 𝑎 ≤ 𝑧 ) ∧ ( 𝑧 < 𝑏 → 𝑧 < 𝑑 ) ) → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) |
| 61 |
59 60
|
syl8 |
⊢ ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) → ( ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) → ( 𝑧 ∈ ℝ → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 62 |
61
|
imp31 |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) |
| 63 |
62
|
ancrd |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) ) |
| 64 |
|
an42 |
⊢ ( ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ↔ ( ( 𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧 ) ∧ ( 𝑧 < 𝑏 ∧ 𝑧 < 𝑑 ) ) ) |
| 65 |
|
an4 |
⊢ ( ( ( 𝑎 ≤ 𝑧 ∧ 𝑐 ≤ 𝑧 ) ∧ ( 𝑧 < 𝑏 ∧ 𝑧 < 𝑑 ) ) ↔ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) |
| 66 |
64 65
|
bitri |
⊢ ( ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ↔ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) |
| 67 |
63 66
|
imbitrdi |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 68 |
|
simpr |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ℝ ) |
| 69 |
67 68
|
jctild |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 70 |
46 69
|
sylanl1 |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) → ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ 𝑧 ∈ ℝ ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 72 |
71
|
an32s |
⊢ ( ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) |
| 73 |
38
|
adantr |
⊢ ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ 𝑧 ∈ ℝ ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) ) ) ) ) |
| 75 |
72 74
|
mpbird |
⊢ ( ( ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) |
| 76 |
75
|
expl |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( ( ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ∧ 𝑧 ∈ ℝ ) → 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ) |
| 77 |
76
|
ancomsd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) → 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ) ) |
| 78 |
43 77
|
impbid |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) ) |
| 79 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ↔ ( 𝑧 ∈ ℝ ∧ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) ) ) |
| 80 |
78 79
|
bitr4di |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑧 ∈ ( 𝑥 ∩ 𝑦 ) ↔ 𝑧 ∈ { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 81 |
16 17 18 80
|
eqrd |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 82 |
3 81
|
jca |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑏 ∈ ℝ ∧ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 83 |
82
|
19.8ad |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ∃ 𝑏 ( 𝑏 ∈ ℝ ∧ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 84 |
|
df-rex |
⊢ ( ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ↔ ∃ 𝑏 ( 𝑏 ∈ ℝ ∧ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 85 |
83 84
|
sylibr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 86 |
2 85
|
jca |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑐 ∈ ℝ ∧ ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 87 |
86
|
19.8ad |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ∃ 𝑐 ( 𝑐 ∈ ℝ ∧ ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 88 |
|
df-rex |
⊢ ( ∃ 𝑐 ∈ ℝ ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ↔ ∃ 𝑐 ( 𝑐 ∈ ℝ ∧ ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ) |
| 89 |
87 88
|
sylibr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ∃ 𝑐 ∈ ℝ ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 90 |
1
|
icoreelrnab |
⊢ ( ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ↔ ∃ 𝑐 ∈ ℝ ∃ 𝑏 ∈ ℝ ( 𝑥 ∩ 𝑦 ) = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
| 91 |
89 90
|
sylibr |
⊢ ( ( ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ 𝑥 = { 𝑧 ∈ ℝ ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) ∧ ( 𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ ∧ 𝑦 = { 𝑧 ∈ ℝ ∣ ( 𝑐 ≤ 𝑧 ∧ 𝑧 < 𝑑 ) } ) ) ∧ ( 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ 𝑑 ) ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) |