| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isbasisrelowl.1 | ⊢ 𝐼  =  ( [,)  “  ( ℝ  ×  ℝ ) ) | 
						
							| 2 |  | simplr1 | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  𝑐  ∈  ℝ ) | 
						
							| 3 |  | simpll2 | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  𝑏  ∈  ℝ ) | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑧 𝑎  ∈  ℝ | 
						
							| 5 |  | nfv | ⊢ Ⅎ 𝑧 𝑏  ∈  ℝ | 
						
							| 6 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } | 
						
							| 7 | 6 | nfeq2 | ⊢ Ⅎ 𝑧 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } | 
						
							| 8 | 4 5 7 | nf3an | ⊢ Ⅎ 𝑧 ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 9 |  | nfv | ⊢ Ⅎ 𝑧 𝑐  ∈  ℝ | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑧 𝑑  ∈  ℝ | 
						
							| 11 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } | 
						
							| 12 | 11 | nfeq2 | ⊢ Ⅎ 𝑧 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } | 
						
							| 13 | 9 10 12 | nf3an | ⊢ Ⅎ 𝑧 ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 14 | 8 13 | nfan | ⊢ Ⅎ 𝑧 ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑧 ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) | 
						
							| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑧 ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) ) | 
						
							| 17 |  | nfcv | ⊢ Ⅎ 𝑧 ( 𝑥  ∩  𝑦 ) | 
						
							| 18 |  | nfrab1 | ⊢ Ⅎ 𝑧 { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } | 
						
							| 19 |  | simp3 | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  →  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 20 |  | simp3 | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) | 
						
							| 21 |  | elin | ⊢ ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  𝑦 ) ) | 
						
							| 22 |  | eleq2 | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( 𝑧  ∈  𝑥  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 23 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 24 | 22 23 | bitrdi | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( 𝑧  ∈  𝑥  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 25 | 24 | anbi1d | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( ( 𝑧  ∈  𝑥  ∧  𝑧  ∈  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 26 | 21 25 | bitrid | ⊢ ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  𝑦 ) ) ) | 
						
							| 27 |  | eleq2 | ⊢ ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( 𝑧  ∈  𝑦  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) ) | 
						
							| 28 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 29 | 27 28 | bitrdi | ⊢ ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( 𝑧  ∈  𝑦  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 30 | 29 | anbi2d | ⊢ ( 𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) }  →  ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 31 | 26 30 | sylan9bb | ⊢ ( ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 32 |  | an4 | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( ( 𝑧  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 33 |  | anidm | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ↔  𝑧  ∈  ℝ ) | 
						
							| 34 | 33 | anbi1i | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  𝑧  ∈  ℝ )  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 35 | 32 34 | bitri | ⊢ ( ( ( 𝑧  ∈  ℝ  ∧  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 36 | 31 35 | bitrdi | ⊢ ( ( 𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 37 | 19 20 36 | syl2an | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  →  𝑧  ∈  ℝ ) | 
						
							| 40 |  | simprrl | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  →  𝑐  ≤  𝑧 ) | 
						
							| 41 |  | simprlr | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  →  𝑧  <  𝑏 ) | 
						
							| 42 | 39 40 41 | jca32 | ⊢ ( ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) )  →  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 43 | 38 42 | biimtrdi | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  →  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 44 |  | 3simpa | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  →  ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ ) ) | 
						
							| 45 |  | 3simpa | ⊢ ( ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } )  →  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) ) | 
						
							| 46 | 44 45 | anim12i | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  →  ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) ) ) | 
						
							| 47 |  | letr | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑐  ≤  𝑧 )  →  𝑎  ≤  𝑧 ) ) | 
						
							| 48 | 47 | 3expia | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑎  ≤  𝑐  ∧  𝑐  ≤  𝑧 )  →  𝑎  ≤  𝑧 ) ) ) | 
						
							| 49 | 48 | exp4a | ⊢ ( ( 𝑎  ∈  ℝ  ∧  𝑐  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  →  ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) ) ) ) | 
						
							| 50 | 49 | ad2ant2r | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) ) ) ) | 
						
							| 51 |  | ltletr | ⊢ ( ( 𝑧  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ )  →  ( ( 𝑧  <  𝑏  ∧  𝑏  ≤  𝑑 )  →  𝑧  <  𝑑 ) ) | 
						
							| 52 | 51 | 3coml | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑧  <  𝑏  ∧  𝑏  ≤  𝑑 )  →  𝑧  <  𝑑 ) ) | 
						
							| 53 | 52 | expcomd | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑧  ∈  ℝ )  →  ( 𝑏  ≤  𝑑  →  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) | 
						
							| 54 | 53 | 3expia | ⊢ ( ( 𝑏  ∈  ℝ  ∧  𝑑  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  →  ( 𝑏  ≤  𝑑  →  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) ) | 
						
							| 55 | 54 | ad2ant2l | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( 𝑏  ≤  𝑑  →  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) ) | 
						
							| 56 | 50 55 | jcad | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) )  ∧  ( 𝑏  ≤  𝑑  →  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 57 |  | anim12 | ⊢ ( ( ( 𝑎  ≤  𝑐  →  ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 ) )  ∧  ( 𝑏  ≤  𝑑  →  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  →  ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) ) | 
						
							| 58 | 56 57 | syl6 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  →  ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 59 | 58 | com23 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 60 |  | anim12 | ⊢ ( ( ( 𝑐  ≤  𝑧  →  𝑎  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  →  𝑧  <  𝑑 ) )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 61 | 59 60 | syl8 | ⊢ ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  →  ( ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 )  →  ( 𝑧  ∈  ℝ  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 62 | 61 | imp31 | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 63 | 62 | ancrd | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 64 |  | an42 | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 65 |  | an4 | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑐  ≤  𝑧 )  ∧  ( 𝑧  <  𝑏  ∧  𝑧  <  𝑑 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 66 | 64 65 | bitri | ⊢ ( ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑑 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ↔  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) | 
						
							| 67 | 63 66 | imbitrdi | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 68 |  | simpr | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ℝ ) | 
						
							| 69 | 67 68 | jctild | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 70 | 46 69 | sylanl1 | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  →  ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  𝑧  ∈  ℝ )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 72 | 71 | an32s | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) | 
						
							| 73 | 38 | adantr | ⊢ ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) ) ) ) ) | 
						
							| 75 | 72 74 | mpbird | ⊢ ( ( ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) | 
						
							| 76 | 75 | expl | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( ( ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 )  ∧  𝑧  ∈  ℝ )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 77 | 76 | ancomsd | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) )  →  𝑧  ∈  ( 𝑥  ∩  𝑦 ) ) ) | 
						
							| 78 | 43 77 | impbid | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) ) | 
						
							| 79 |  | rabid | ⊢ ( 𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ↔  ( 𝑧  ∈  ℝ  ∧  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) ) ) | 
						
							| 80 | 78 79 | bitr4di | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑧  ∈  ( 𝑥  ∩  𝑦 )  ↔  𝑧  ∈  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 81 | 16 17 18 80 | eqrd | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 82 | 3 81 | jca | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑏  ∈  ℝ  ∧  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 83 | 82 | 19.8ad | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ∃ 𝑏 ( 𝑏  ∈  ℝ  ∧  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 84 |  | df-rex | ⊢ ( ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ↔  ∃ 𝑏 ( 𝑏  ∈  ℝ  ∧  ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 85 | 83 84 | sylibr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 86 | 2 85 | jca | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑐  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 87 | 86 | 19.8ad | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ∃ 𝑐 ( 𝑐  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 88 |  | df-rex | ⊢ ( ∃ 𝑐  ∈  ℝ ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) }  ↔  ∃ 𝑐 ( 𝑐  ∈  ℝ  ∧  ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) ) | 
						
							| 89 | 87 88 | sylibr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ∃ 𝑐  ∈  ℝ ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 90 | 1 | icoreelrnab | ⊢ ( ( 𝑥  ∩  𝑦 )  ∈  𝐼  ↔  ∃ 𝑐  ∈  ℝ ∃ 𝑏  ∈  ℝ ( 𝑥  ∩  𝑦 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 91 | 89 90 | sylibr | ⊢ ( ( ( ( 𝑎  ∈  ℝ  ∧  𝑏  ∈  ℝ  ∧  𝑥  =  { 𝑧  ∈  ℝ  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } )  ∧  ( 𝑐  ∈  ℝ  ∧  𝑑  ∈  ℝ  ∧  𝑦  =  { 𝑧  ∈  ℝ  ∣  ( 𝑐  ≤  𝑧  ∧  𝑧  <  𝑑 ) } ) )  ∧  ( 𝑎  ≤  𝑐  ∧  𝑏  ≤  𝑑 ) )  →  ( 𝑥  ∩  𝑦 )  ∈  𝐼 ) |