Metamath Proof Explorer


Theorem isbasisrelowllem1

Description: Lemma for isbasisrelowl . (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1 I = . 2
Assertion isbasisrelowllem1 a b x = z | a z z < b c d y = z | c z z < d a c b d x y I

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1 I = . 2
2 simplr1 a b x = z | a z z < b c d y = z | c z z < d a c b d c
3 simpll2 a b x = z | a z z < b c d y = z | c z z < d a c b d b
4 nfv z a
5 nfv z b
6 nfrab1 _ z z | a z z < b
7 6 nfeq2 z x = z | a z z < b
8 4 5 7 nf3an z a b x = z | a z z < b
9 nfv z c
10 nfv z d
11 nfrab1 _ z z | c z z < d
12 11 nfeq2 z y = z | c z z < d
13 9 10 12 nf3an z c d y = z | c z z < d
14 8 13 nfan z a b x = z | a z z < b c d y = z | c z z < d
15 nfv z a c b d
16 14 15 nfan z a b x = z | a z z < b c d y = z | c z z < d a c b d
17 nfcv _ z x y
18 nfrab1 _ z z | c z z < b
19 simp3 a b x = z | a z z < b x = z | a z z < b
20 simp3 c d y = z | c z z < d y = z | c z z < d
21 elin z x y z x z y
22 eleq2 x = z | a z z < b z x z z | a z z < b
23 rabid z z | a z z < b z a z z < b
24 22 23 bitrdi x = z | a z z < b z x z a z z < b
25 24 anbi1d x = z | a z z < b z x z y z a z z < b z y
26 21 25 syl5bb x = z | a z z < b z x y z a z z < b z y
27 eleq2 y = z | c z z < d z y z z | c z z < d
28 rabid z z | c z z < d z c z z < d
29 27 28 bitrdi y = z | c z z < d z y z c z z < d
30 29 anbi2d y = z | c z z < d z a z z < b z y z a z z < b z c z z < d
31 26 30 sylan9bb x = z | a z z < b y = z | c z z < d z x y z a z z < b z c z z < d
32 an4 z a z z < b z c z z < d z z a z z < b c z z < d
33 anidm z z z
34 33 anbi1i z z a z z < b c z z < d z a z z < b c z z < d
35 32 34 bitri z a z z < b z c z z < d z a z z < b c z z < d
36 31 35 bitrdi x = z | a z z < b y = z | c z z < d z x y z a z z < b c z z < d
37 19 20 36 syl2an a b x = z | a z z < b c d y = z | c z z < d z x y z a z z < b c z z < d
38 37 adantr a b x = z | a z z < b c d y = z | c z z < d a c b d z x y z a z z < b c z z < d
39 simpl z a z z < b c z z < d z
40 simprrl z a z z < b c z z < d c z
41 simprlr z a z z < b c z z < d z < b
42 39 40 41 jca32 z a z z < b c z z < d z c z z < b
43 38 42 syl6bi a b x = z | a z z < b c d y = z | c z z < d a c b d z x y z c z z < b
44 3simpa a b x = z | a z z < b a b
45 3simpa c d y = z | c z z < d c d
46 44 45 anim12i a b x = z | a z z < b c d y = z | c z z < d a b c d
47 letr a c z a c c z a z
48 47 3expia a c z a c c z a z
49 48 exp4a a c z a c c z a z
50 49 ad2ant2r a b c d z a c c z a z
51 ltletr z b d z < b b d z < d
52 51 3coml b d z z < b b d z < d
53 52 expcomd b d z b d z < b z < d
54 53 3expia b d z b d z < b z < d
55 54 ad2ant2l a b c d z b d z < b z < d
56 50 55 jcad a b c d z a c c z a z b d z < b z < d
57 anim12 a c c z a z b d z < b z < d a c b d c z a z z < b z < d
58 56 57 syl6 a b c d z a c b d c z a z z < b z < d
59 58 com23 a b c d a c b d z c z a z z < b z < d
60 anim12 c z a z z < b z < d c z z < b a z z < d
61 59 60 syl8 a b c d a c b d z c z z < b a z z < d
62 61 imp31 a b c d a c b d z c z z < b a z z < d
63 62 ancrd a b c d a c b d z c z z < b a z z < d c z z < b
64 an42 a z z < d c z z < b a z c z z < b z < d
65 an4 a z c z z < b z < d a z z < b c z z < d
66 64 65 bitri a z z < d c z z < b a z z < b c z z < d
67 63 66 syl6ib a b c d a c b d z c z z < b a z z < b c z z < d
68 simpr a b c d a c b d z z
69 67 68 jctild a b c d a c b d z c z z < b z a z z < b c z z < d
70 46 69 sylanl1 a b x = z | a z z < b c d y = z | c z z < d a c b d z c z z < b z a z z < b c z z < d
71 70 imp a b x = z | a z z < b c d y = z | c z z < d a c b d z c z z < b z a z z < b c z z < d
72 71 an32s a b x = z | a z z < b c d y = z | c z z < d a c b d c z z < b z z a z z < b c z z < d
73 38 adantr a b x = z | a z z < b c d y = z | c z z < d a c b d c z z < b z x y z a z z < b c z z < d
74 73 adantr a b x = z | a z z < b c d y = z | c z z < d a c b d c z z < b z z x y z a z z < b c z z < d
75 72 74 mpbird a b x = z | a z z < b c d y = z | c z z < d a c b d c z z < b z z x y
76 75 expl a b x = z | a z z < b c d y = z | c z z < d a c b d c z z < b z z x y
77 76 ancomsd a b x = z | a z z < b c d y = z | c z z < d a c b d z c z z < b z x y
78 43 77 impbid a b x = z | a z z < b c d y = z | c z z < d a c b d z x y z c z z < b
79 rabid z z | c z z < b z c z z < b
80 78 79 bitr4di a b x = z | a z z < b c d y = z | c z z < d a c b d z x y z z | c z z < b
81 16 17 18 80 eqrd a b x = z | a z z < b c d y = z | c z z < d a c b d x y = z | c z z < b
82 3 81 jca a b x = z | a z z < b c d y = z | c z z < d a c b d b x y = z | c z z < b
83 82 19.8ad a b x = z | a z z < b c d y = z | c z z < d a c b d b b x y = z | c z z < b
84 df-rex b x y = z | c z z < b b b x y = z | c z z < b
85 83 84 sylibr a b x = z | a z z < b c d y = z | c z z < d a c b d b x y = z | c z z < b
86 2 85 jca a b x = z | a z z < b c d y = z | c z z < d a c b d c b x y = z | c z z < b
87 86 19.8ad a b x = z | a z z < b c d y = z | c z z < d a c b d c c b x y = z | c z z < b
88 df-rex c b x y = z | c z z < b c c b x y = z | c z z < b
89 87 88 sylibr a b x = z | a z z < b c d y = z | c z z < d a c b d c b x y = z | c z z < b
90 1 icoreelrnab x y I c b x y = z | c z z < b
91 89 90 sylibr a b x = z | a z z < b c d y = z | c z z < d a c b d x y I