Step |
Hyp |
Ref |
Expression |
1 |
|
isbasisrelowl.1 |
|
2 |
|
simplr1 |
|
3 |
|
simpll2 |
|
4 |
|
nfv |
|
5 |
|
nfv |
|
6 |
|
nfrab1 |
|
7 |
6
|
nfeq2 |
|
8 |
4 5 7
|
nf3an |
|
9 |
|
nfv |
|
10 |
|
nfv |
|
11 |
|
nfrab1 |
|
12 |
11
|
nfeq2 |
|
13 |
9 10 12
|
nf3an |
|
14 |
8 13
|
nfan |
|
15 |
|
nfv |
|
16 |
14 15
|
nfan |
|
17 |
|
nfcv |
|
18 |
|
nfrab1 |
|
19 |
|
simp3 |
|
20 |
|
simp3 |
|
21 |
|
elin |
|
22 |
|
eleq2 |
|
23 |
|
rabid |
|
24 |
22 23
|
bitrdi |
|
25 |
24
|
anbi1d |
|
26 |
21 25
|
syl5bb |
|
27 |
|
eleq2 |
|
28 |
|
rabid |
|
29 |
27 28
|
bitrdi |
|
30 |
29
|
anbi2d |
|
31 |
26 30
|
sylan9bb |
|
32 |
|
an4 |
|
33 |
|
anidm |
|
34 |
33
|
anbi1i |
|
35 |
32 34
|
bitri |
|
36 |
31 35
|
bitrdi |
|
37 |
19 20 36
|
syl2an |
|
38 |
37
|
adantr |
|
39 |
|
simpl |
|
40 |
|
simprrl |
|
41 |
|
simprlr |
|
42 |
39 40 41
|
jca32 |
|
43 |
38 42
|
syl6bi |
|
44 |
|
3simpa |
|
45 |
|
3simpa |
|
46 |
44 45
|
anim12i |
|
47 |
|
letr |
|
48 |
47
|
3expia |
|
49 |
48
|
exp4a |
|
50 |
49
|
ad2ant2r |
|
51 |
|
ltletr |
|
52 |
51
|
3coml |
|
53 |
52
|
expcomd |
|
54 |
53
|
3expia |
|
55 |
54
|
ad2ant2l |
|
56 |
50 55
|
jcad |
|
57 |
|
anim12 |
|
58 |
56 57
|
syl6 |
|
59 |
58
|
com23 |
|
60 |
|
anim12 |
|
61 |
59 60
|
syl8 |
|
62 |
61
|
imp31 |
|
63 |
62
|
ancrd |
|
64 |
|
an42 |
|
65 |
|
an4 |
|
66 |
64 65
|
bitri |
|
67 |
63 66
|
syl6ib |
|
68 |
|
simpr |
|
69 |
67 68
|
jctild |
|
70 |
46 69
|
sylanl1 |
|
71 |
70
|
imp |
|
72 |
71
|
an32s |
|
73 |
38
|
adantr |
|
74 |
73
|
adantr |
|
75 |
72 74
|
mpbird |
|
76 |
75
|
expl |
|
77 |
76
|
ancomsd |
|
78 |
43 77
|
impbid |
|
79 |
|
rabid |
|
80 |
78 79
|
bitr4di |
|
81 |
16 17 18 80
|
eqrd |
|
82 |
3 81
|
jca |
|
83 |
82
|
19.8ad |
|
84 |
|
df-rex |
|
85 |
83 84
|
sylibr |
|
86 |
2 85
|
jca |
|
87 |
86
|
19.8ad |
|
88 |
|
df-rex |
|
89 |
87 88
|
sylibr |
|
90 |
1
|
icoreelrnab |
|
91 |
89 90
|
sylibr |
|