Metamath Proof Explorer


Theorem isbasisrelowl

Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1 I=.2
Assertion isbasisrelowl ITopBases

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1 I=.2
2 df-ico .=x*,y*z*|xzz<y
3 2 ixxex .V
4 imaexg .V.2V
5 3 4 ax-mp .2V
6 1 5 eqeltri IV
7 1 icoreclin xIyIxyI
8 7 rgen2 xIyIxyI
9 fiinbas IVxIyIxyIITopBases
10 6 8 9 mp2an ITopBases