Metamath Proof Explorer


Theorem isbasisrelowl

Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1 I = . 2
Assertion isbasisrelowl I TopBases

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1 I = . 2
2 df-ico . = x * , y * z * | x z z < y
3 2 ixxex . V
4 imaexg . V . 2 V
5 3 4 ax-mp . 2 V
6 1 5 eqeltri I V
7 1 icoreclin x I y I x y I
8 7 rgen2 x I y I x y I
9 fiinbas I V x I y I x y I I TopBases
10 6 8 9 mp2an I TopBases