Metamath Proof Explorer


Theorem isbasisrelowl

Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1
|- I = ( [,) " ( RR X. RR ) )
Assertion isbasisrelowl
|- I e. TopBases

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1
 |-  I = ( [,) " ( RR X. RR ) )
2 df-ico
 |-  [,) = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z < y ) } )
3 2 ixxex
 |-  [,) e. _V
4 imaexg
 |-  ( [,) e. _V -> ( [,) " ( RR X. RR ) ) e. _V )
5 3 4 ax-mp
 |-  ( [,) " ( RR X. RR ) ) e. _V
6 1 5 eqeltri
 |-  I e. _V
7 1 icoreclin
 |-  ( ( x e. I /\ y e. I ) -> ( x i^i y ) e. I )
8 7 rgen2
 |-  A. x e. I A. y e. I ( x i^i y ) e. I
9 fiinbas
 |-  ( ( I e. _V /\ A. x e. I A. y e. I ( x i^i y ) e. I ) -> I e. TopBases )
10 6 8 9 mp2an
 |-  I e. TopBases