Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | isbasisrelowl.1 | ⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) | |
| Assertion | isbasisrelowl | ⊢ 𝐼 ∈ TopBases | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | isbasisrelowl.1 | ⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) | |
| 2 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 3 | 2 | ixxex | ⊢ [,) ∈ V | 
| 4 | imaexg | ⊢ ( [,) ∈ V → ( [,) “ ( ℝ × ℝ ) ) ∈ V ) | |
| 5 | 3 4 | ax-mp | ⊢ ( [,) “ ( ℝ × ℝ ) ) ∈ V | 
| 6 | 1 5 | eqeltri | ⊢ 𝐼 ∈ V | 
| 7 | 1 | icoreclin | ⊢ ( ( 𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) | 
| 8 | 7 | rgen2 | ⊢ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 | 
| 9 | fiinbas | ⊢ ( ( 𝐼 ∈ V ∧ ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 ( 𝑥 ∩ 𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ TopBases ) | |
| 10 | 6 8 9 | mp2an | ⊢ 𝐼 ∈ TopBases |