Metamath Proof Explorer


Theorem isbasisrelowl

Description: The set of all closed-below, open-above intervals of reals form a basis. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis isbasisrelowl.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
Assertion isbasisrelowl 𝐼 ∈ TopBases

Proof

Step Hyp Ref Expression
1 isbasisrelowl.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
2 df-ico [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥𝑧𝑧 < 𝑦 ) } )
3 2 ixxex [,) ∈ V
4 imaexg ( [,) ∈ V → ( [,) “ ( ℝ × ℝ ) ) ∈ V )
5 3 4 ax-mp ( [,) “ ( ℝ × ℝ ) ) ∈ V
6 1 5 eqeltri 𝐼 ∈ V
7 1 icoreclin ( ( 𝑥𝐼𝑦𝐼 ) → ( 𝑥𝑦 ) ∈ 𝐼 )
8 7 rgen2 𝑥𝐼𝑦𝐼 ( 𝑥𝑦 ) ∈ 𝐼
9 fiinbas ( ( 𝐼 ∈ V ∧ ∀ 𝑥𝐼𝑦𝐼 ( 𝑥𝑦 ) ∈ 𝐼 ) → 𝐼 ∈ TopBases )
10 6 8 9 mp2an 𝐼 ∈ TopBases