| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoreunrn.1 | ⊢ 𝐼  =  ( [,)  “  ( ℝ  ×  ℝ ) ) | 
						
							| 2 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 3 |  | peano2re | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ ) | 
						
							| 4 |  | rexr | ⊢ ( ( 𝑥  +  1 )  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ* ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑥  +  1 )  ∈  ℝ* ) | 
						
							| 6 |  | ltp1 | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  ( 𝑥  +  1 ) ) | 
						
							| 7 |  | lbico1 | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑥  +  1 )  ∈  ℝ*  ∧  𝑥  <  ( 𝑥  +  1 ) )  →  𝑥  ∈  ( 𝑥 [,) ( 𝑥  +  1 ) ) ) | 
						
							| 8 | 2 5 6 7 | syl3anc | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ( 𝑥 [,) ( 𝑥  +  1 ) ) ) | 
						
							| 9 |  | df-ov | ⊢ ( 𝑥 [,) ( 𝑥  +  1 ) )  =  ( [,) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 ) | 
						
							| 10 | 8 9 | eleqtrdi | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ( [,) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 ) ) | 
						
							| 11 |  | opelxpi | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 𝑥  +  1 )  ∈  ℝ )  →  〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 12 | 3 11 | mpdan | ⊢ ( 𝑥  ∈  ℝ  →  〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 13 |  | fvres | ⊢ ( 〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  ( ℝ  ×  ℝ )  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  =  ( [,) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  =  ( [,) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 ) ) | 
						
							| 15 | 10 14 | eleqtrrd | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 ) ) | 
						
							| 16 |  | icoreresf | ⊢ ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ | 
						
							| 17 | 16 | fdmi | ⊢ dom  ( [,)  ↾  ( ℝ  ×  ℝ ) )  =  ( ℝ  ×  ℝ ) | 
						
							| 18 | 11 17 | eleqtrrdi | ⊢ ( ( 𝑥  ∈  ℝ  ∧  ( 𝑥  +  1 )  ∈  ℝ )  →  〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  dom  ( [,)  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 19 | 3 18 | mpdan | ⊢ ( 𝑥  ∈  ℝ  →  〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  dom  ( [,)  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 20 |  | ffun | ⊢ ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ  →  Fun  ( [,)  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 21 | 16 20 | ax-mp | ⊢ Fun  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 22 |  | fvelrn | ⊢ ( ( Fun  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ∧  〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  dom  ( [,)  ↾  ( ℝ  ×  ℝ ) ) )  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 23 | 21 22 | mpan | ⊢ ( 〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  dom  ( [,)  ↾  ( ℝ  ×  ℝ ) )  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  ∈  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) ) | 
						
							| 24 |  | df-ima | ⊢ ( [,)  “  ( ℝ  ×  ℝ ) )  =  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 25 | 1 24 | eqtri | ⊢ 𝐼  =  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) ) | 
						
							| 26 | 23 25 | eleqtrrdi | ⊢ ( 〈 𝑥 ,  ( 𝑥  +  1 ) 〉  ∈  dom  ( [,)  ↾  ( ℝ  ×  ℝ ) )  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  ∈  𝐼 ) | 
						
							| 27 | 19 26 | syl | ⊢ ( 𝑥  ∈  ℝ  →  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  ∈  𝐼 ) | 
						
							| 28 |  | elunii | ⊢ ( ( 𝑥  ∈  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  ∧  ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) ‘ 〈 𝑥 ,  ( 𝑥  +  1 ) 〉 )  ∈  𝐼 )  →  𝑥  ∈  ∪  𝐼 ) | 
						
							| 29 | 15 27 28 | syl2anc | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ∪  𝐼 ) | 
						
							| 30 | 29 | ssriv | ⊢ ℝ  ⊆  ∪  𝐼 | 
						
							| 31 |  | frn | ⊢ ( ( [,)  ↾  ( ℝ  ×  ℝ ) ) : ( ℝ  ×  ℝ ) ⟶ 𝒫  ℝ  →  ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ⊆  𝒫  ℝ ) | 
						
							| 32 | 16 31 | ax-mp | ⊢ ran  ( [,)  ↾  ( ℝ  ×  ℝ ) )  ⊆  𝒫  ℝ | 
						
							| 33 | 25 32 | eqsstri | ⊢ 𝐼  ⊆  𝒫  ℝ | 
						
							| 34 |  | uniss | ⊢ ( 𝐼  ⊆  𝒫  ℝ  →  ∪  𝐼  ⊆  ∪  𝒫  ℝ ) | 
						
							| 35 |  | unipw | ⊢ ∪  𝒫  ℝ  =  ℝ | 
						
							| 36 | 34 35 | sseqtrdi | ⊢ ( 𝐼  ⊆  𝒫  ℝ  →  ∪  𝐼  ⊆  ℝ ) | 
						
							| 37 | 33 36 | ax-mp | ⊢ ∪  𝐼  ⊆  ℝ | 
						
							| 38 | 30 37 | eqssi | ⊢ ℝ  =  ∪  𝐼 |