Metamath Proof Explorer


Theorem icoreunrn

Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis icoreunrn.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
Assertion icoreunrn ℝ = 𝐼

Proof

Step Hyp Ref Expression
1 icoreunrn.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
2 rexr ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* )
3 peano2re ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ )
4 rexr ( ( 𝑥 + 1 ) ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ* )
5 3 4 syl ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ* )
6 ltp1 ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) )
7 lbico1 ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 + 1 ) ∈ ℝ*𝑥 < ( 𝑥 + 1 ) ) → 𝑥 ∈ ( 𝑥 [,) ( 𝑥 + 1 ) ) )
8 2 5 6 7 syl3anc ( 𝑥 ∈ ℝ → 𝑥 ∈ ( 𝑥 [,) ( 𝑥 + 1 ) ) )
9 df-ov ( 𝑥 [,) ( 𝑥 + 1 ) ) = ( [,) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ )
10 8 9 eleqtrdi ( 𝑥 ∈ ℝ → 𝑥 ∈ ( [,) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) )
11 opelxpi ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ ( ℝ × ℝ ) )
12 3 11 mpdan ( 𝑥 ∈ ℝ → ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ ( ℝ × ℝ ) )
13 fvres ( ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ ( ℝ × ℝ ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) = ( [,) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) )
14 12 13 syl ( 𝑥 ∈ ℝ → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) = ( [,) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) )
15 10 14 eleqtrrd ( 𝑥 ∈ ℝ → 𝑥 ∈ ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) )
16 icoreresf ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ
17 16 fdmi dom ( [,) ↾ ( ℝ × ℝ ) ) = ( ℝ × ℝ )
18 11 17 eleqtrrdi ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) )
19 3 18 mpdan ( 𝑥 ∈ ℝ → ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) )
20 ffun ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ → Fun ( [,) ↾ ( ℝ × ℝ ) ) )
21 16 20 ax-mp Fun ( [,) ↾ ( ℝ × ℝ ) )
22 fvelrn ( ( Fun ( [,) ↾ ( ℝ × ℝ ) ) ∧ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) )
23 21 22 mpan ( ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) )
24 df-ima ( [,) “ ( ℝ × ℝ ) ) = ran ( [,) ↾ ( ℝ × ℝ ) )
25 1 24 eqtri 𝐼 = ran ( [,) ↾ ( ℝ × ℝ ) )
26 23 25 eleqtrrdi ( ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) ∈ 𝐼 )
27 19 26 syl ( 𝑥 ∈ ℝ → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) ∈ 𝐼 )
28 elunii ( ( 𝑥 ∈ ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) ∧ ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ ⟨ 𝑥 , ( 𝑥 + 1 ) ⟩ ) ∈ 𝐼 ) → 𝑥 𝐼 )
29 15 27 28 syl2anc ( 𝑥 ∈ ℝ → 𝑥 𝐼 )
30 29 ssriv ℝ ⊆ 𝐼
31 frn ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ → ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ )
32 16 31 ax-mp ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ
33 25 32 eqsstri 𝐼 ⊆ 𝒫 ℝ
34 uniss ( 𝐼 ⊆ 𝒫 ℝ → 𝐼 𝒫 ℝ )
35 unipw 𝒫 ℝ = ℝ
36 34 35 sseqtrdi ( 𝐼 ⊆ 𝒫 ℝ → 𝐼 ⊆ ℝ )
37 33 36 ax-mp 𝐼 ⊆ ℝ
38 30 37 eqssi ℝ = 𝐼