Step |
Hyp |
Ref |
Expression |
1 |
|
icoreunrn.1 |
⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) |
2 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
3 |
|
peano2re |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ ) |
4 |
|
rexr |
⊢ ( ( 𝑥 + 1 ) ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ* ) |
5 |
3 4
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 + 1 ) ∈ ℝ* ) |
6 |
|
ltp1 |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < ( 𝑥 + 1 ) ) |
7 |
|
lbico1 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑥 + 1 ) ∈ ℝ* ∧ 𝑥 < ( 𝑥 + 1 ) ) → 𝑥 ∈ ( 𝑥 [,) ( 𝑥 + 1 ) ) ) |
8 |
2 5 6 7
|
syl3anc |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( 𝑥 [,) ( 𝑥 + 1 ) ) ) |
9 |
|
df-ov |
⊢ ( 𝑥 [,) ( 𝑥 + 1 ) ) = ( [,) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) |
10 |
8 9
|
eleqtrdi |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( [,) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ) |
11 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ ( ℝ × ℝ ) ) |
12 |
3 11
|
mpdan |
⊢ ( 𝑥 ∈ ℝ → 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ ( ℝ × ℝ ) ) |
13 |
|
fvres |
⊢ ( 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ ( ℝ × ℝ ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) = ( [,) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ) |
14 |
12 13
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) = ( [,) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ) |
15 |
10 14
|
eleqtrrd |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ) |
16 |
|
icoreresf |
⊢ ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ |
17 |
16
|
fdmi |
⊢ dom ( [,) ↾ ( ℝ × ℝ ) ) = ( ℝ × ℝ ) |
18 |
11 17
|
eleqtrrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑥 + 1 ) ∈ ℝ ) → 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) ) |
19 |
3 18
|
mpdan |
⊢ ( 𝑥 ∈ ℝ → 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) ) |
20 |
|
ffun |
⊢ ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ → Fun ( [,) ↾ ( ℝ × ℝ ) ) ) |
21 |
16 20
|
ax-mp |
⊢ Fun ( [,) ↾ ( ℝ × ℝ ) ) |
22 |
|
fvelrn |
⊢ ( ( Fun ( [,) ↾ ( ℝ × ℝ ) ) ∧ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ) |
23 |
21 22
|
mpan |
⊢ ( 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ∈ ran ( [,) ↾ ( ℝ × ℝ ) ) ) |
24 |
|
df-ima |
⊢ ( [,) “ ( ℝ × ℝ ) ) = ran ( [,) ↾ ( ℝ × ℝ ) ) |
25 |
1 24
|
eqtri |
⊢ 𝐼 = ran ( [,) ↾ ( ℝ × ℝ ) ) |
26 |
23 25
|
eleqtrrdi |
⊢ ( 〈 𝑥 , ( 𝑥 + 1 ) 〉 ∈ dom ( [,) ↾ ( ℝ × ℝ ) ) → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ∈ 𝐼 ) |
27 |
19 26
|
syl |
⊢ ( 𝑥 ∈ ℝ → ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ∈ 𝐼 ) |
28 |
|
elunii |
⊢ ( ( 𝑥 ∈ ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ∧ ( ( [,) ↾ ( ℝ × ℝ ) ) ‘ 〈 𝑥 , ( 𝑥 + 1 ) 〉 ) ∈ 𝐼 ) → 𝑥 ∈ ∪ 𝐼 ) |
29 |
15 27 28
|
syl2anc |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ∪ 𝐼 ) |
30 |
29
|
ssriv |
⊢ ℝ ⊆ ∪ 𝐼 |
31 |
|
frn |
⊢ ( ( [,) ↾ ( ℝ × ℝ ) ) : ( ℝ × ℝ ) ⟶ 𝒫 ℝ → ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ ) |
32 |
16 31
|
ax-mp |
⊢ ran ( [,) ↾ ( ℝ × ℝ ) ) ⊆ 𝒫 ℝ |
33 |
25 32
|
eqsstri |
⊢ 𝐼 ⊆ 𝒫 ℝ |
34 |
|
uniss |
⊢ ( 𝐼 ⊆ 𝒫 ℝ → ∪ 𝐼 ⊆ ∪ 𝒫 ℝ ) |
35 |
|
unipw |
⊢ ∪ 𝒫 ℝ = ℝ |
36 |
34 35
|
sseqtrdi |
⊢ ( 𝐼 ⊆ 𝒫 ℝ → ∪ 𝐼 ⊆ ℝ ) |
37 |
33 36
|
ax-mp |
⊢ ∪ 𝐼 ⊆ ℝ |
38 |
30 37
|
eqssi |
⊢ ℝ = ∪ 𝐼 |