Metamath Proof Explorer


Theorem istoprelowl

Description: The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis istoprelowl.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
Assertion istoprelowl ( topGen ‘ 𝐼 ) ∈ ( TopOn ‘ ℝ )

Proof

Step Hyp Ref Expression
1 istoprelowl.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
2 1 isbasisrelowl 𝐼 ∈ TopBases
3 tgtopon ( 𝐼 ∈ TopBases → ( topGen ‘ 𝐼 ) ∈ ( TopOn ‘ 𝐼 ) )
4 1 icoreunrn ℝ = 𝐼
5 4 eqcomi 𝐼 = ℝ
6 5 fveq2i ( TopOn ‘ 𝐼 ) = ( TopOn ‘ ℝ )
7 3 6 eleqtrdi ( 𝐼 ∈ TopBases → ( topGen ‘ 𝐼 ) ∈ ( TopOn ‘ ℝ ) )
8 2 7 ax-mp ( topGen ‘ 𝐼 ) ∈ ( TopOn ‘ ℝ )