| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoreelrn.1 | ⊢ 𝐼  =  ( [,)  “  ( ℝ  ×  ℝ ) ) | 
						
							| 2 |  | icoreval | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,) 𝐵 )  =  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) } ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | df-ico | ⊢ [,)  =  ( 𝑎  ∈  ℝ* ,  𝑏  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑎  ≤  𝑧  ∧  𝑧  <  𝑏 ) } ) | 
						
							| 6 | 5 | ixxf | ⊢ [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ* | 
						
							| 7 |  | ffun | ⊢ ( [,) : ( ℝ*  ×  ℝ* ) ⟶ 𝒫  ℝ*  →  Fun  [,) ) | 
						
							| 8 | 6 7 | mp1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  Fun  [,) ) | 
						
							| 9 |  | rexpssxrxp | ⊢ ( ℝ  ×  ℝ )  ⊆  ( ℝ*  ×  ℝ* ) | 
						
							| 10 | 6 | fdmi | ⊢ dom  [,)  =  ( ℝ*  ×  ℝ* ) | 
						
							| 11 | 9 10 | sseqtrri | ⊢ ( ℝ  ×  ℝ )  ⊆  dom  [,) | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℝ  ×  ℝ )  ⊆  dom  [,) ) | 
						
							| 13 | 3 4 8 12 | elovimad | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,) 𝐵 )  ∈  ( [,)  “  ( ℝ  ×  ℝ ) ) ) | 
						
							| 14 | 13 1 | eleqtrrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴 [,) 𝐵 )  ∈  𝐼 ) | 
						
							| 15 | 2 14 | eqeltrrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  { 𝑧  ∈  ℝ  ∣  ( 𝐴  ≤  𝑧  ∧  𝑧  <  𝐵 ) }  ∈  𝐼 ) |