Step |
Hyp |
Ref |
Expression |
1 |
|
icoreelrn.1 |
⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) |
2 |
|
icoreval |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) } ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
5 |
|
df-ico |
⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑧 ∧ 𝑧 < 𝑏 ) } ) |
6 |
5
|
ixxf |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
7 |
|
ffun |
⊢ ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,) ) |
8 |
6 7
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → Fun [,) ) |
9 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
10 |
6
|
fdmi |
⊢ dom [,) = ( ℝ* × ℝ* ) |
11 |
9 10
|
sseqtrri |
⊢ ( ℝ × ℝ ) ⊆ dom [,) |
12 |
11
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ × ℝ ) ⊆ dom [,) ) |
13 |
3 4 8 12
|
elovimad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) ∈ ( [,) “ ( ℝ × ℝ ) ) ) |
14 |
13 1
|
eleqtrrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) ∈ 𝐼 ) |
15 |
2 14
|
eqeltrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { 𝑧 ∈ ℝ ∣ ( 𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵 ) } ∈ 𝐼 ) |