Metamath Proof Explorer


Theorem icoreelrn

Description: A class abstraction which is an element of the set of closed-below, open-above intervals of reals. (Contributed by ML, 1-Aug-2020)

Ref Expression
Hypothesis icoreelrn.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
Assertion icoreelrn ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 icoreelrn.1 𝐼 = ( [,) “ ( ℝ × ℝ ) )
2 icoreval ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) = { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } )
3 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ )
4 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
5 df-ico [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑎𝑧𝑧 < 𝑏 ) } )
6 5 ixxf [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ*
7 ffun ( [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* → Fun [,) )
8 6 7 mp1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → Fun [,) )
9 rexpssxrxp ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* )
10 6 fdmi dom [,) = ( ℝ* × ℝ* )
11 9 10 sseqtrri ( ℝ × ℝ ) ⊆ dom [,)
12 11 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ × ℝ ) ⊆ dom [,) )
13 3 4 8 12 elovimad ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) ∈ ( [,) “ ( ℝ × ℝ ) ) )
14 13 1 eleqtrrdi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,) 𝐵 ) ∈ 𝐼 )
15 2 14 eqeltrrd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { 𝑧 ∈ ℝ ∣ ( 𝐴𝑧𝑧 < 𝐵 ) } ∈ 𝐼 )