| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoreelrn.1 |  |-  I = ( [,) " ( RR X. RR ) ) | 
						
							| 2 |  | icoreval |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) = { z e. RR | ( A <_ z /\ z < B ) } ) | 
						
							| 3 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 4 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 5 |  | df-ico |  |-  [,) = ( a e. RR* , b e. RR* |-> { z e. RR* | ( a <_ z /\ z < b ) } ) | 
						
							| 6 | 5 | ixxf |  |-  [,) : ( RR* X. RR* ) --> ~P RR* | 
						
							| 7 |  | ffun |  |-  ( [,) : ( RR* X. RR* ) --> ~P RR* -> Fun [,) ) | 
						
							| 8 | 6 7 | mp1i |  |-  ( ( A e. RR /\ B e. RR ) -> Fun [,) ) | 
						
							| 9 |  | rexpssxrxp |  |-  ( RR X. RR ) C_ ( RR* X. RR* ) | 
						
							| 10 | 6 | fdmi |  |-  dom [,) = ( RR* X. RR* ) | 
						
							| 11 | 9 10 | sseqtrri |  |-  ( RR X. RR ) C_ dom [,) | 
						
							| 12 | 11 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> ( RR X. RR ) C_ dom [,) ) | 
						
							| 13 | 3 4 8 12 | elovimad |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) e. ( [,) " ( RR X. RR ) ) ) | 
						
							| 14 | 13 1 | eleqtrrdi |  |-  ( ( A e. RR /\ B e. RR ) -> ( A [,) B ) e. I ) | 
						
							| 15 | 2 14 | eqeltrrd |  |-  ( ( A e. RR /\ B e. RR ) -> { z e. RR | ( A <_ z /\ z < B ) } e. I ) |