| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eliooxr |
|- ( X e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) |
| 2 |
1
|
simpld |
|- ( X e. ( A (,) B ) -> A e. RR* ) |
| 3 |
|
elxr |
|- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
| 4 |
|
19.3v |
|- ( A. y ( X e. ( A (,) B ) /\ A e. RR ) <-> ( X e. ( A (,) B ) /\ A e. RR ) ) |
| 5 |
|
ovex |
|- ( ( A + X ) / 2 ) e. _V |
| 6 |
|
nfcv |
|- F/_ y ( ( A + X ) / 2 ) |
| 7 |
|
nfre1 |
|- F/ y E. y e. ( A (,) B ) y < X |
| 8 |
|
elioore |
|- ( X e. ( A (,) B ) -> X e. RR ) |
| 9 |
|
readdcl |
|- ( ( A e. RR /\ X e. RR ) -> ( A + X ) e. RR ) |
| 10 |
9
|
rehalfcld |
|- ( ( A e. RR /\ X e. RR ) -> ( ( A + X ) / 2 ) e. RR ) |
| 11 |
8 10
|
sylan2 |
|- ( ( A e. RR /\ X e. ( A (,) B ) ) -> ( ( A + X ) / 2 ) e. RR ) |
| 12 |
11
|
ancoms |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) e. RR ) |
| 13 |
12
|
rexrd |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) e. RR* ) |
| 14 |
|
eliooord |
|- ( X e. ( A (,) B ) -> ( A < X /\ X < B ) ) |
| 15 |
14
|
simpld |
|- ( X e. ( A (,) B ) -> A < X ) |
| 16 |
15
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> A < X ) |
| 17 |
|
avglt1 |
|- ( ( A e. RR /\ X e. RR ) -> ( A < X <-> A < ( ( A + X ) / 2 ) ) ) |
| 18 |
8 17
|
sylan2 |
|- ( ( A e. RR /\ X e. ( A (,) B ) ) -> ( A < X <-> A < ( ( A + X ) / 2 ) ) ) |
| 19 |
18
|
ancoms |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( A < X <-> A < ( ( A + X ) / 2 ) ) ) |
| 20 |
16 19
|
mpbid |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> A < ( ( A + X ) / 2 ) ) |
| 21 |
8
|
rexrd |
|- ( X e. ( A (,) B ) -> X e. RR* ) |
| 22 |
21
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> X e. RR* ) |
| 23 |
1
|
simprd |
|- ( X e. ( A (,) B ) -> B e. RR* ) |
| 24 |
23
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> B e. RR* ) |
| 25 |
|
avglt2 |
|- ( ( A e. RR /\ X e. RR ) -> ( A < X <-> ( ( A + X ) / 2 ) < X ) ) |
| 26 |
8 25
|
sylan2 |
|- ( ( A e. RR /\ X e. ( A (,) B ) ) -> ( A < X <-> ( ( A + X ) / 2 ) < X ) ) |
| 27 |
26
|
ancoms |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( A < X <-> ( ( A + X ) / 2 ) < X ) ) |
| 28 |
16 27
|
mpbid |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) < X ) |
| 29 |
14
|
simprd |
|- ( X e. ( A (,) B ) -> X < B ) |
| 30 |
29
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> X < B ) |
| 31 |
13 22 24 28 30
|
xrlttrd |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) < B ) |
| 32 |
|
elioo1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) <-> ( ( ( A + X ) / 2 ) e. RR* /\ A < ( ( A + X ) / 2 ) /\ ( ( A + X ) / 2 ) < B ) ) ) |
| 33 |
1 32
|
syl |
|- ( X e. ( A (,) B ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) <-> ( ( ( A + X ) / 2 ) e. RR* /\ A < ( ( A + X ) / 2 ) /\ ( ( A + X ) / 2 ) < B ) ) ) |
| 34 |
33
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) <-> ( ( ( A + X ) / 2 ) e. RR* /\ A < ( ( A + X ) / 2 ) /\ ( ( A + X ) / 2 ) < B ) ) ) |
| 35 |
13 20 31 34
|
mpbir3and |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) e. ( A (,) B ) ) |
| 36 |
35 28
|
jca |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) /\ ( ( A + X ) / 2 ) < X ) ) |
| 37 |
|
eleq1 |
|- ( y = ( ( A + X ) / 2 ) -> ( y e. ( A (,) B ) <-> ( ( A + X ) / 2 ) e. ( A (,) B ) ) ) |
| 38 |
|
breq1 |
|- ( y = ( ( A + X ) / 2 ) -> ( y < X <-> ( ( A + X ) / 2 ) < X ) ) |
| 39 |
37 38
|
anbi12d |
|- ( y = ( ( A + X ) / 2 ) -> ( ( y e. ( A (,) B ) /\ y < X ) <-> ( ( ( A + X ) / 2 ) e. ( A (,) B ) /\ ( ( A + X ) / 2 ) < X ) ) ) |
| 40 |
36 39
|
imbitrrid |
|- ( y = ( ( A + X ) / 2 ) -> ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( y e. ( A (,) B ) /\ y < X ) ) ) |
| 41 |
|
rspe |
|- ( ( y e. ( A (,) B ) /\ y < X ) -> E. y e. ( A (,) B ) y < X ) |
| 42 |
40 41
|
syl6 |
|- ( y = ( ( A + X ) / 2 ) -> ( ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) ) |
| 43 |
6 7 42
|
spcimgf |
|- ( ( ( A + X ) / 2 ) e. _V -> ( A. y ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) ) |
| 44 |
5 43
|
ax-mp |
|- ( A. y ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) |
| 45 |
4 44
|
sylbir |
|- ( ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) |
| 46 |
45
|
expcom |
|- ( A e. RR -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 47 |
|
simpl |
|- ( ( X e. ( A (,) B ) /\ A = +oo ) -> X e. ( A (,) B ) ) |
| 48 |
|
oveq1 |
|- ( A = +oo -> ( A (,) B ) = ( +oo (,) B ) ) |
| 49 |
48
|
eleq2d |
|- ( A = +oo -> ( X e. ( A (,) B ) <-> X e. ( +oo (,) B ) ) ) |
| 50 |
49
|
adantl |
|- ( ( X e. ( A (,) B ) /\ A = +oo ) -> ( X e. ( A (,) B ) <-> X e. ( +oo (,) B ) ) ) |
| 51 |
|
pnfxr |
|- +oo e. RR* |
| 52 |
|
elioo2 |
|- ( ( +oo e. RR* /\ B e. RR* ) -> ( X e. ( +oo (,) B ) <-> ( X e. RR /\ +oo < X /\ X < B ) ) ) |
| 53 |
51 52
|
mpan |
|- ( B e. RR* -> ( X e. ( +oo (,) B ) <-> ( X e. RR /\ +oo < X /\ X < B ) ) ) |
| 54 |
53
|
biimpd |
|- ( B e. RR* -> ( X e. ( +oo (,) B ) -> ( X e. RR /\ +oo < X /\ X < B ) ) ) |
| 55 |
|
elioore |
|- ( X e. ( +oo (,) B ) -> X e. RR ) |
| 56 |
|
rexr |
|- ( X e. RR -> X e. RR* ) |
| 57 |
|
pnfnlt |
|- ( X e. RR* -> -. +oo < X ) |
| 58 |
56 57
|
syl |
|- ( X e. RR -> -. +oo < X ) |
| 59 |
58
|
intn3an2d |
|- ( X e. RR -> -. ( X e. RR /\ +oo < X /\ X < B ) ) |
| 60 |
55 59
|
syl |
|- ( X e. ( +oo (,) B ) -> -. ( X e. RR /\ +oo < X /\ X < B ) ) |
| 61 |
60
|
a1i |
|- ( B e. RR* -> ( X e. ( +oo (,) B ) -> -. ( X e. RR /\ +oo < X /\ X < B ) ) ) |
| 62 |
54 61
|
pm2.65d |
|- ( B e. RR* -> -. X e. ( +oo (,) B ) ) |
| 63 |
23 62
|
syl |
|- ( X e. ( A (,) B ) -> -. X e. ( +oo (,) B ) ) |
| 64 |
63
|
pm2.21d |
|- ( X e. ( A (,) B ) -> ( X e. ( +oo (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 65 |
64
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A = +oo ) -> ( X e. ( +oo (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 66 |
50 65
|
sylbid |
|- ( ( X e. ( A (,) B ) /\ A = +oo ) -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 67 |
47 66
|
mpd |
|- ( ( X e. ( A (,) B ) /\ A = +oo ) -> E. y e. ( A (,) B ) y < X ) |
| 68 |
67
|
expcom |
|- ( A = +oo -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 69 |
|
19.3v |
|- ( A. y ( X e. ( A (,) B ) /\ A = -oo ) <-> ( X e. ( A (,) B ) /\ A = -oo ) ) |
| 70 |
|
ovex |
|- ( X - 1 ) e. _V |
| 71 |
|
nfcv |
|- F/_ y ( X - 1 ) |
| 72 |
|
peano2rem |
|- ( X e. RR -> ( X - 1 ) e. RR ) |
| 73 |
8 72
|
syl |
|- ( X e. ( A (,) B ) -> ( X - 1 ) e. RR ) |
| 74 |
|
mnflt |
|- ( ( X - 1 ) e. RR -> -oo < ( X - 1 ) ) |
| 75 |
73 74
|
syl |
|- ( X e. ( A (,) B ) -> -oo < ( X - 1 ) ) |
| 76 |
73
|
rexrd |
|- ( X e. ( A (,) B ) -> ( X - 1 ) e. RR* ) |
| 77 |
8
|
ltm1d |
|- ( X e. ( A (,) B ) -> ( X - 1 ) < X ) |
| 78 |
76 21 23 77 29
|
xrlttrd |
|- ( X e. ( A (,) B ) -> ( X - 1 ) < B ) |
| 79 |
|
mnfxr |
|- -oo e. RR* |
| 80 |
|
elioo2 |
|- ( ( -oo e. RR* /\ B e. RR* ) -> ( ( X - 1 ) e. ( -oo (,) B ) <-> ( ( X - 1 ) e. RR /\ -oo < ( X - 1 ) /\ ( X - 1 ) < B ) ) ) |
| 81 |
79 80
|
mpan |
|- ( B e. RR* -> ( ( X - 1 ) e. ( -oo (,) B ) <-> ( ( X - 1 ) e. RR /\ -oo < ( X - 1 ) /\ ( X - 1 ) < B ) ) ) |
| 82 |
23 81
|
syl |
|- ( X e. ( A (,) B ) -> ( ( X - 1 ) e. ( -oo (,) B ) <-> ( ( X - 1 ) e. RR /\ -oo < ( X - 1 ) /\ ( X - 1 ) < B ) ) ) |
| 83 |
73 75 78 82
|
mpbir3and |
|- ( X e. ( A (,) B ) -> ( X - 1 ) e. ( -oo (,) B ) ) |
| 84 |
83
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( X - 1 ) e. ( -oo (,) B ) ) |
| 85 |
|
oveq1 |
|- ( A = -oo -> ( A (,) B ) = ( -oo (,) B ) ) |
| 86 |
85
|
eleq2d |
|- ( A = -oo -> ( ( X - 1 ) e. ( A (,) B ) <-> ( X - 1 ) e. ( -oo (,) B ) ) ) |
| 87 |
86
|
adantl |
|- ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( ( X - 1 ) e. ( A (,) B ) <-> ( X - 1 ) e. ( -oo (,) B ) ) ) |
| 88 |
84 87
|
mpbird |
|- ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( X - 1 ) e. ( A (,) B ) ) |
| 89 |
77
|
adantr |
|- ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( X - 1 ) < X ) |
| 90 |
88 89
|
jca |
|- ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) |
| 91 |
90
|
adantr |
|- ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) |
| 92 |
|
eleq1 |
|- ( y = ( X - 1 ) -> ( y e. ( A (,) B ) <-> ( X - 1 ) e. ( A (,) B ) ) ) |
| 93 |
|
breq1 |
|- ( y = ( X - 1 ) -> ( y < X <-> ( X - 1 ) < X ) ) |
| 94 |
92 93
|
anbi12d |
|- ( y = ( X - 1 ) -> ( ( y e. ( A (,) B ) /\ y < X ) <-> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) ) |
| 95 |
94
|
adantl |
|- ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> ( ( y e. ( A (,) B ) /\ y < X ) <-> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) ) |
| 96 |
91 95
|
mpbird |
|- ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> ( y e. ( A (,) B ) /\ y < X ) ) |
| 97 |
96 41
|
syl |
|- ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> E. y e. ( A (,) B ) y < X ) |
| 98 |
97
|
expcom |
|- ( y = ( X - 1 ) -> ( ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) ) |
| 99 |
71 7 98
|
spcimgf |
|- ( ( X - 1 ) e. _V -> ( A. y ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) ) |
| 100 |
70 99
|
ax-mp |
|- ( A. y ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) |
| 101 |
69 100
|
sylbir |
|- ( ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) |
| 102 |
101
|
expcom |
|- ( A = -oo -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 103 |
46 68 102
|
3jaoi |
|- ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 104 |
3 103
|
sylbi |
|- ( A e. RR* -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) |
| 105 |
2 104
|
mpcom |
|- ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) |