| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eliooxr |  |-  ( X e. ( A (,) B ) -> ( A e. RR* /\ B e. RR* ) ) | 
						
							| 2 | 1 | simpld |  |-  ( X e. ( A (,) B ) -> A e. RR* ) | 
						
							| 3 |  | elxr |  |-  ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) | 
						
							| 4 |  | 19.3v |  |-  ( A. y ( X e. ( A (,) B ) /\ A e. RR ) <-> ( X e. ( A (,) B ) /\ A e. RR ) ) | 
						
							| 5 |  | ovex |  |-  ( ( A + X ) / 2 ) e. _V | 
						
							| 6 |  | nfcv |  |-  F/_ y ( ( A + X ) / 2 ) | 
						
							| 7 |  | nfre1 |  |-  F/ y E. y e. ( A (,) B ) y < X | 
						
							| 8 |  | elioore |  |-  ( X e. ( A (,) B ) -> X e. RR ) | 
						
							| 9 |  | readdcl |  |-  ( ( A e. RR /\ X e. RR ) -> ( A + X ) e. RR ) | 
						
							| 10 | 9 | rehalfcld |  |-  ( ( A e. RR /\ X e. RR ) -> ( ( A + X ) / 2 ) e. RR ) | 
						
							| 11 | 8 10 | sylan2 |  |-  ( ( A e. RR /\ X e. ( A (,) B ) ) -> ( ( A + X ) / 2 ) e. RR ) | 
						
							| 12 | 11 | ancoms |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) e. RR ) | 
						
							| 13 | 12 | rexrd |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) e. RR* ) | 
						
							| 14 |  | eliooord |  |-  ( X e. ( A (,) B ) -> ( A < X /\ X < B ) ) | 
						
							| 15 | 14 | simpld |  |-  ( X e. ( A (,) B ) -> A < X ) | 
						
							| 16 | 15 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> A < X ) | 
						
							| 17 |  | avglt1 |  |-  ( ( A e. RR /\ X e. RR ) -> ( A < X <-> A < ( ( A + X ) / 2 ) ) ) | 
						
							| 18 | 8 17 | sylan2 |  |-  ( ( A e. RR /\ X e. ( A (,) B ) ) -> ( A < X <-> A < ( ( A + X ) / 2 ) ) ) | 
						
							| 19 | 18 | ancoms |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( A < X <-> A < ( ( A + X ) / 2 ) ) ) | 
						
							| 20 | 16 19 | mpbid |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> A < ( ( A + X ) / 2 ) ) | 
						
							| 21 | 8 | rexrd |  |-  ( X e. ( A (,) B ) -> X e. RR* ) | 
						
							| 22 | 21 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> X e. RR* ) | 
						
							| 23 | 1 | simprd |  |-  ( X e. ( A (,) B ) -> B e. RR* ) | 
						
							| 24 | 23 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> B e. RR* ) | 
						
							| 25 |  | avglt2 |  |-  ( ( A e. RR /\ X e. RR ) -> ( A < X <-> ( ( A + X ) / 2 ) < X ) ) | 
						
							| 26 | 8 25 | sylan2 |  |-  ( ( A e. RR /\ X e. ( A (,) B ) ) -> ( A < X <-> ( ( A + X ) / 2 ) < X ) ) | 
						
							| 27 | 26 | ancoms |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( A < X <-> ( ( A + X ) / 2 ) < X ) ) | 
						
							| 28 | 16 27 | mpbid |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) < X ) | 
						
							| 29 | 14 | simprd |  |-  ( X e. ( A (,) B ) -> X < B ) | 
						
							| 30 | 29 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> X < B ) | 
						
							| 31 | 13 22 24 28 30 | xrlttrd |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) < B ) | 
						
							| 32 |  | elioo1 |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) <-> ( ( ( A + X ) / 2 ) e. RR* /\ A < ( ( A + X ) / 2 ) /\ ( ( A + X ) / 2 ) < B ) ) ) | 
						
							| 33 | 1 32 | syl |  |-  ( X e. ( A (,) B ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) <-> ( ( ( A + X ) / 2 ) e. RR* /\ A < ( ( A + X ) / 2 ) /\ ( ( A + X ) / 2 ) < B ) ) ) | 
						
							| 34 | 33 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) <-> ( ( ( A + X ) / 2 ) e. RR* /\ A < ( ( A + X ) / 2 ) /\ ( ( A + X ) / 2 ) < B ) ) ) | 
						
							| 35 | 13 20 31 34 | mpbir3and |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( A + X ) / 2 ) e. ( A (,) B ) ) | 
						
							| 36 | 35 28 | jca |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( ( ( A + X ) / 2 ) e. ( A (,) B ) /\ ( ( A + X ) / 2 ) < X ) ) | 
						
							| 37 |  | eleq1 |  |-  ( y = ( ( A + X ) / 2 ) -> ( y e. ( A (,) B ) <-> ( ( A + X ) / 2 ) e. ( A (,) B ) ) ) | 
						
							| 38 |  | breq1 |  |-  ( y = ( ( A + X ) / 2 ) -> ( y < X <-> ( ( A + X ) / 2 ) < X ) ) | 
						
							| 39 | 37 38 | anbi12d |  |-  ( y = ( ( A + X ) / 2 ) -> ( ( y e. ( A (,) B ) /\ y < X ) <-> ( ( ( A + X ) / 2 ) e. ( A (,) B ) /\ ( ( A + X ) / 2 ) < X ) ) ) | 
						
							| 40 | 36 39 | imbitrrid |  |-  ( y = ( ( A + X ) / 2 ) -> ( ( X e. ( A (,) B ) /\ A e. RR ) -> ( y e. ( A (,) B ) /\ y < X ) ) ) | 
						
							| 41 |  | rspe |  |-  ( ( y e. ( A (,) B ) /\ y < X ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 42 | 40 41 | syl6 |  |-  ( y = ( ( A + X ) / 2 ) -> ( ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 43 | 6 7 42 | spcimgf |  |-  ( ( ( A + X ) / 2 ) e. _V -> ( A. y ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 44 | 5 43 | ax-mp |  |-  ( A. y ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 45 | 4 44 | sylbir |  |-  ( ( X e. ( A (,) B ) /\ A e. RR ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 46 | 45 | expcom |  |-  ( A e. RR -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 47 |  | simpl |  |-  ( ( X e. ( A (,) B ) /\ A = +oo ) -> X e. ( A (,) B ) ) | 
						
							| 48 |  | oveq1 |  |-  ( A = +oo -> ( A (,) B ) = ( +oo (,) B ) ) | 
						
							| 49 | 48 | eleq2d |  |-  ( A = +oo -> ( X e. ( A (,) B ) <-> X e. ( +oo (,) B ) ) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( X e. ( A (,) B ) /\ A = +oo ) -> ( X e. ( A (,) B ) <-> X e. ( +oo (,) B ) ) ) | 
						
							| 51 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 52 |  | elioo2 |  |-  ( ( +oo e. RR* /\ B e. RR* ) -> ( X e. ( +oo (,) B ) <-> ( X e. RR /\ +oo < X /\ X < B ) ) ) | 
						
							| 53 | 51 52 | mpan |  |-  ( B e. RR* -> ( X e. ( +oo (,) B ) <-> ( X e. RR /\ +oo < X /\ X < B ) ) ) | 
						
							| 54 | 53 | biimpd |  |-  ( B e. RR* -> ( X e. ( +oo (,) B ) -> ( X e. RR /\ +oo < X /\ X < B ) ) ) | 
						
							| 55 |  | elioore |  |-  ( X e. ( +oo (,) B ) -> X e. RR ) | 
						
							| 56 |  | rexr |  |-  ( X e. RR -> X e. RR* ) | 
						
							| 57 |  | pnfnlt |  |-  ( X e. RR* -> -. +oo < X ) | 
						
							| 58 | 56 57 | syl |  |-  ( X e. RR -> -. +oo < X ) | 
						
							| 59 | 58 | intn3an2d |  |-  ( X e. RR -> -. ( X e. RR /\ +oo < X /\ X < B ) ) | 
						
							| 60 | 55 59 | syl |  |-  ( X e. ( +oo (,) B ) -> -. ( X e. RR /\ +oo < X /\ X < B ) ) | 
						
							| 61 | 60 | a1i |  |-  ( B e. RR* -> ( X e. ( +oo (,) B ) -> -. ( X e. RR /\ +oo < X /\ X < B ) ) ) | 
						
							| 62 | 54 61 | pm2.65d |  |-  ( B e. RR* -> -. X e. ( +oo (,) B ) ) | 
						
							| 63 | 23 62 | syl |  |-  ( X e. ( A (,) B ) -> -. X e. ( +oo (,) B ) ) | 
						
							| 64 | 63 | pm2.21d |  |-  ( X e. ( A (,) B ) -> ( X e. ( +oo (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A = +oo ) -> ( X e. ( +oo (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 66 | 50 65 | sylbid |  |-  ( ( X e. ( A (,) B ) /\ A = +oo ) -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 67 | 47 66 | mpd |  |-  ( ( X e. ( A (,) B ) /\ A = +oo ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 68 | 67 | expcom |  |-  ( A = +oo -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 69 |  | 19.3v |  |-  ( A. y ( X e. ( A (,) B ) /\ A = -oo ) <-> ( X e. ( A (,) B ) /\ A = -oo ) ) | 
						
							| 70 |  | ovex |  |-  ( X - 1 ) e. _V | 
						
							| 71 |  | nfcv |  |-  F/_ y ( X - 1 ) | 
						
							| 72 |  | peano2rem |  |-  ( X e. RR -> ( X - 1 ) e. RR ) | 
						
							| 73 | 8 72 | syl |  |-  ( X e. ( A (,) B ) -> ( X - 1 ) e. RR ) | 
						
							| 74 |  | mnflt |  |-  ( ( X - 1 ) e. RR -> -oo < ( X - 1 ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( X e. ( A (,) B ) -> -oo < ( X - 1 ) ) | 
						
							| 76 | 73 | rexrd |  |-  ( X e. ( A (,) B ) -> ( X - 1 ) e. RR* ) | 
						
							| 77 | 8 | ltm1d |  |-  ( X e. ( A (,) B ) -> ( X - 1 ) < X ) | 
						
							| 78 | 76 21 23 77 29 | xrlttrd |  |-  ( X e. ( A (,) B ) -> ( X - 1 ) < B ) | 
						
							| 79 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 80 |  | elioo2 |  |-  ( ( -oo e. RR* /\ B e. RR* ) -> ( ( X - 1 ) e. ( -oo (,) B ) <-> ( ( X - 1 ) e. RR /\ -oo < ( X - 1 ) /\ ( X - 1 ) < B ) ) ) | 
						
							| 81 | 79 80 | mpan |  |-  ( B e. RR* -> ( ( X - 1 ) e. ( -oo (,) B ) <-> ( ( X - 1 ) e. RR /\ -oo < ( X - 1 ) /\ ( X - 1 ) < B ) ) ) | 
						
							| 82 | 23 81 | syl |  |-  ( X e. ( A (,) B ) -> ( ( X - 1 ) e. ( -oo (,) B ) <-> ( ( X - 1 ) e. RR /\ -oo < ( X - 1 ) /\ ( X - 1 ) < B ) ) ) | 
						
							| 83 | 73 75 78 82 | mpbir3and |  |-  ( X e. ( A (,) B ) -> ( X - 1 ) e. ( -oo (,) B ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( X - 1 ) e. ( -oo (,) B ) ) | 
						
							| 85 |  | oveq1 |  |-  ( A = -oo -> ( A (,) B ) = ( -oo (,) B ) ) | 
						
							| 86 | 85 | eleq2d |  |-  ( A = -oo -> ( ( X - 1 ) e. ( A (,) B ) <-> ( X - 1 ) e. ( -oo (,) B ) ) ) | 
						
							| 87 | 86 | adantl |  |-  ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( ( X - 1 ) e. ( A (,) B ) <-> ( X - 1 ) e. ( -oo (,) B ) ) ) | 
						
							| 88 | 84 87 | mpbird |  |-  ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( X - 1 ) e. ( A (,) B ) ) | 
						
							| 89 | 77 | adantr |  |-  ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( X - 1 ) < X ) | 
						
							| 90 | 88 89 | jca |  |-  ( ( X e. ( A (,) B ) /\ A = -oo ) -> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) | 
						
							| 91 | 90 | adantr |  |-  ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) | 
						
							| 92 |  | eleq1 |  |-  ( y = ( X - 1 ) -> ( y e. ( A (,) B ) <-> ( X - 1 ) e. ( A (,) B ) ) ) | 
						
							| 93 |  | breq1 |  |-  ( y = ( X - 1 ) -> ( y < X <-> ( X - 1 ) < X ) ) | 
						
							| 94 | 92 93 | anbi12d |  |-  ( y = ( X - 1 ) -> ( ( y e. ( A (,) B ) /\ y < X ) <-> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> ( ( y e. ( A (,) B ) /\ y < X ) <-> ( ( X - 1 ) e. ( A (,) B ) /\ ( X - 1 ) < X ) ) ) | 
						
							| 96 | 91 95 | mpbird |  |-  ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> ( y e. ( A (,) B ) /\ y < X ) ) | 
						
							| 97 | 96 41 | syl |  |-  ( ( ( X e. ( A (,) B ) /\ A = -oo ) /\ y = ( X - 1 ) ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 98 | 97 | expcom |  |-  ( y = ( X - 1 ) -> ( ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 99 | 71 7 98 | spcimgf |  |-  ( ( X - 1 ) e. _V -> ( A. y ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 100 | 70 99 | ax-mp |  |-  ( A. y ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 101 | 69 100 | sylbir |  |-  ( ( X e. ( A (,) B ) /\ A = -oo ) -> E. y e. ( A (,) B ) y < X ) | 
						
							| 102 | 101 | expcom |  |-  ( A = -oo -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 103 | 46 68 102 | 3jaoi |  |-  ( ( A e. RR \/ A = +oo \/ A = -oo ) -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 104 | 3 103 | sylbi |  |-  ( A e. RR* -> ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) ) | 
						
							| 105 | 2 104 | mpcom |  |-  ( X e. ( A (,) B ) -> E. y e. ( A (,) B ) y < X ) |