| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relowlssretop.1 |
|- I = ( [,) " ( RR X. RR ) ) |
| 2 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
| 3 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
| 4 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( o e. ran (,) <-> E. a e. RR* E. b e. RR* o = ( a (,) b ) ) ) |
| 5 |
2 3 4
|
mp2b |
|- ( o e. ran (,) <-> E. a e. RR* E. b e. RR* o = ( a (,) b ) ) |
| 6 |
|
elxr |
|- ( b e. RR* <-> ( b e. RR \/ b = +oo \/ b = -oo ) ) |
| 7 |
|
simpr |
|- ( ( a e. RR* /\ b e. RR ) -> b e. RR ) |
| 8 |
|
elioore |
|- ( x e. ( a (,) b ) -> x e. RR ) |
| 9 |
7 8
|
anim12ci |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x e. RR /\ b e. RR ) ) |
| 10 |
1
|
icoreelrn |
|- ( ( x e. RR /\ b e. RR ) -> { z e. RR | ( x <_ z /\ z < b ) } e. I ) |
| 11 |
9 10
|
syl |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < b ) } e. I ) |
| 12 |
8
|
adantl |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x e. RR ) |
| 13 |
8
|
leidd |
|- ( x e. ( a (,) b ) -> x <_ x ) |
| 14 |
13
|
adantl |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x <_ x ) |
| 15 |
7
|
rexrd |
|- ( ( a e. RR* /\ b e. RR ) -> b e. RR* ) |
| 16 |
|
elioo1 |
|- ( ( a e. RR* /\ b e. RR* ) -> ( x e. ( a (,) b ) <-> ( x e. RR* /\ a < x /\ x < b ) ) ) |
| 17 |
15 16
|
syldan |
|- ( ( a e. RR* /\ b e. RR ) -> ( x e. ( a (,) b ) <-> ( x e. RR* /\ a < x /\ x < b ) ) ) |
| 18 |
17
|
biimpa |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x e. RR* /\ a < x /\ x < b ) ) |
| 19 |
18
|
simp3d |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x < b ) |
| 20 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 21 |
20
|
3anim1i |
|- ( ( x e. RR /\ x <_ x /\ x < b ) -> ( x e. RR* /\ x <_ x /\ x < b ) ) |
| 22 |
|
rexr |
|- ( b e. RR -> b e. RR* ) |
| 23 |
|
elico1 |
|- ( ( x e. RR* /\ b e. RR* ) -> ( x e. ( x [,) b ) <-> ( x e. RR* /\ x <_ x /\ x < b ) ) ) |
| 24 |
20 22 23
|
syl2an |
|- ( ( x e. RR /\ b e. RR ) -> ( x e. ( x [,) b ) <-> ( x e. RR* /\ x <_ x /\ x < b ) ) ) |
| 25 |
24
|
biimprd |
|- ( ( x e. RR /\ b e. RR ) -> ( ( x e. RR* /\ x <_ x /\ x < b ) -> x e. ( x [,) b ) ) ) |
| 26 |
9 21 25
|
syl2im |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( ( x e. RR /\ x <_ x /\ x < b ) -> x e. ( x [,) b ) ) ) |
| 27 |
|
icoreval |
|- ( ( x e. RR /\ b e. RR ) -> ( x [,) b ) = { z e. RR | ( x <_ z /\ z < b ) } ) |
| 28 |
9 27
|
syl |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x [,) b ) = { z e. RR | ( x <_ z /\ z < b ) } ) |
| 29 |
28
|
eleq2d |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x e. ( x [,) b ) <-> x e. { z e. RR | ( x <_ z /\ z < b ) } ) ) |
| 30 |
26 29
|
sylibd |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( ( x e. RR /\ x <_ x /\ x < b ) -> x e. { z e. RR | ( x <_ z /\ z < b ) } ) ) |
| 31 |
12 14 19 30
|
mp3and |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x e. { z e. RR | ( x <_ z /\ z < b ) } ) |
| 32 |
|
nfv |
|- F/ z ( ( a e. RR* /\ b e. RR* ) /\ x e. ( a (,) b ) ) |
| 33 |
|
nfrab1 |
|- F/_ z { z e. RR | ( x <_ z /\ z < b ) } |
| 34 |
|
nfcv |
|- F/_ z ( a (,) b ) |
| 35 |
|
iooval |
|- ( ( a e. RR* /\ b e. RR* ) -> ( a (,) b ) = { x e. RR* | ( a < x /\ x < b ) } ) |
| 36 |
35
|
eleq2d |
|- ( ( a e. RR* /\ b e. RR* ) -> ( x e. ( a (,) b ) <-> x e. { x e. RR* | ( a < x /\ x < b ) } ) ) |
| 37 |
36
|
anbi1d |
|- ( ( a e. RR* /\ b e. RR* ) -> ( ( x e. ( a (,) b ) /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) <-> ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) ) |
| 38 |
37
|
pm5.32i |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( x e. ( a (,) b ) /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) <-> ( ( a e. RR* /\ b e. RR* ) /\ ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) ) |
| 39 |
|
rabid |
|- ( x e. { x e. RR* | ( a < x /\ x < b ) } <-> ( x e. RR* /\ ( a < x /\ x < b ) ) ) |
| 40 |
|
rabid |
|- ( z e. { z e. RR | ( x <_ z /\ z < b ) } <-> ( z e. RR /\ ( x <_ z /\ z < b ) ) ) |
| 41 |
39 40
|
anbi12i |
|- ( ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) <-> ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) |
| 42 |
|
simpl |
|- ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> z e. RR ) |
| 43 |
42
|
rexrd |
|- ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> z e. RR* ) |
| 44 |
43
|
ad2antll |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. RR* ) |
| 45 |
|
simpl |
|- ( ( x e. RR* /\ ( a < x /\ x < b ) ) -> x e. RR* ) |
| 46 |
45 43
|
anim12i |
|- ( ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) -> ( x e. RR* /\ z e. RR* ) ) |
| 47 |
46
|
anim2i |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a e. RR* /\ ( x e. RR* /\ z e. RR* ) ) ) |
| 48 |
|
3anass |
|- ( ( a e. RR* /\ x e. RR* /\ z e. RR* ) <-> ( a e. RR* /\ ( x e. RR* /\ z e. RR* ) ) ) |
| 49 |
47 48
|
sylibr |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a e. RR* /\ x e. RR* /\ z e. RR* ) ) |
| 50 |
|
simprl |
|- ( ( x e. RR* /\ ( a < x /\ x < b ) ) -> a < x ) |
| 51 |
|
simprl |
|- ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> x <_ z ) |
| 52 |
50 51
|
anim12i |
|- ( ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) -> ( a < x /\ x <_ z ) ) |
| 53 |
52
|
adantl |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a < x /\ x <_ z ) ) |
| 54 |
|
xrltletr |
|- ( ( a e. RR* /\ x e. RR* /\ z e. RR* ) -> ( ( a < x /\ x <_ z ) -> a < z ) ) |
| 55 |
49 53 54
|
sylc |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> a < z ) |
| 56 |
|
simprr |
|- ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> z < b ) |
| 57 |
56
|
ad2antll |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z < b ) |
| 58 |
55 57
|
jca |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a < z /\ z < b ) ) |
| 59 |
|
rabid |
|- ( z e. { z e. RR* | ( a < z /\ z < b ) } <-> ( z e. RR* /\ ( a < z /\ z < b ) ) ) |
| 60 |
44 58 59
|
sylanbrc |
|- ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. { z e. RR* | ( a < z /\ z < b ) } ) |
| 61 |
60
|
adantlr |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. { z e. RR* | ( a < z /\ z < b ) } ) |
| 62 |
|
iooval |
|- ( ( a e. RR* /\ b e. RR* ) -> ( a (,) b ) = { z e. RR* | ( a < z /\ z < b ) } ) |
| 63 |
62
|
adantr |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a (,) b ) = { z e. RR* | ( a < z /\ z < b ) } ) |
| 64 |
61 63
|
eleqtrrd |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. ( a (,) b ) ) |
| 65 |
41 64
|
sylan2b |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) -> z e. ( a (,) b ) ) |
| 66 |
38 65
|
sylbi |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ ( x e. ( a (,) b ) /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) -> z e. ( a (,) b ) ) |
| 67 |
66
|
expr |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ x e. ( a (,) b ) ) -> ( z e. { z e. RR | ( x <_ z /\ z < b ) } -> z e. ( a (,) b ) ) ) |
| 68 |
32 33 34 67
|
ssrd |
|- ( ( ( a e. RR* /\ b e. RR* ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) |
| 69 |
22 68
|
sylanl2 |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) |
| 70 |
|
eleq2 |
|- ( i = { z e. RR | ( x <_ z /\ z < b ) } -> ( x e. i <-> x e. { z e. RR | ( x <_ z /\ z < b ) } ) ) |
| 71 |
|
sseq1 |
|- ( i = { z e. RR | ( x <_ z /\ z < b ) } -> ( i C_ ( a (,) b ) <-> { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) ) |
| 72 |
70 71
|
anbi12d |
|- ( i = { z e. RR | ( x <_ z /\ z < b ) } -> ( ( x e. i /\ i C_ ( a (,) b ) ) <-> ( x e. { z e. RR | ( x <_ z /\ z < b ) } /\ { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) ) ) |
| 73 |
72
|
rspcev |
|- ( ( { z e. RR | ( x <_ z /\ z < b ) } e. I /\ ( x e. { z e. RR | ( x <_ z /\ z < b ) } /\ { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 74 |
11 31 69 73
|
syl12anc |
|- ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 75 |
74
|
ancom1s |
|- ( ( ( b e. RR /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 76 |
75
|
expl |
|- ( b e. RR -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 77 |
8
|
adantl |
|- ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> x e. RR ) |
| 78 |
|
peano2re |
|- ( x e. RR -> ( x + 1 ) e. RR ) |
| 79 |
1
|
icoreelrn |
|- ( ( x e. RR /\ ( x + 1 ) e. RR ) -> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } e. I ) |
| 80 |
77 78 79
|
syl2anc2 |
|- ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } e. I ) |
| 81 |
|
elioore |
|- ( x e. ( a (,) +oo ) -> x e. RR ) |
| 82 |
81
|
adantl |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x e. RR ) |
| 83 |
82
|
leidd |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x <_ x ) |
| 84 |
82
|
ltp1d |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x < ( x + 1 ) ) |
| 85 |
82 83 84
|
jca32 |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( x e. RR /\ ( x <_ x /\ x < ( x + 1 ) ) ) ) |
| 86 |
|
breq2 |
|- ( z = x -> ( x <_ z <-> x <_ x ) ) |
| 87 |
|
breq1 |
|- ( z = x -> ( z < ( x + 1 ) <-> x < ( x + 1 ) ) ) |
| 88 |
86 87
|
anbi12d |
|- ( z = x -> ( ( x <_ z /\ z < ( x + 1 ) ) <-> ( x <_ x /\ x < ( x + 1 ) ) ) ) |
| 89 |
88
|
elrab |
|- ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } <-> ( x e. RR /\ ( x <_ x /\ x < ( x + 1 ) ) ) ) |
| 90 |
85 89
|
sylibr |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } ) |
| 91 |
|
nfv |
|- F/ z ( a e. RR* /\ x e. ( a (,) +oo ) ) |
| 92 |
|
nfrab1 |
|- F/_ z { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } |
| 93 |
|
nfcv |
|- F/_ z ( a (,) +oo ) |
| 94 |
|
rabid |
|- ( z e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } <-> ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) |
| 95 |
|
simprl |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> z e. RR ) |
| 96 |
|
simpll |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> a e. RR* ) |
| 97 |
82
|
adantr |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> x e. RR ) |
| 98 |
97
|
rexrd |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> x e. RR* ) |
| 99 |
95
|
rexrd |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> z e. RR* ) |
| 100 |
|
elioopnf |
|- ( a e. RR* -> ( x e. ( a (,) +oo ) <-> ( x e. RR /\ a < x ) ) ) |
| 101 |
100
|
simplbda |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> a < x ) |
| 102 |
101
|
adantr |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> a < x ) |
| 103 |
|
simprl |
|- ( ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) -> x <_ z ) |
| 104 |
103
|
adantl |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> x <_ z ) |
| 105 |
96 98 99 102 104
|
xrltletrd |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> a < z ) |
| 106 |
|
elioopnf |
|- ( a e. RR* -> ( z e. ( a (,) +oo ) <-> ( z e. RR /\ a < z ) ) ) |
| 107 |
106
|
biimprd |
|- ( a e. RR* -> ( ( z e. RR /\ a < z ) -> z e. ( a (,) +oo ) ) ) |
| 108 |
107
|
adantr |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( ( z e. RR /\ a < z ) -> z e. ( a (,) +oo ) ) ) |
| 109 |
108
|
adantr |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> ( ( z e. RR /\ a < z ) -> z e. ( a (,) +oo ) ) ) |
| 110 |
95 105 109
|
mp2and |
|- ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> z e. ( a (,) +oo ) ) |
| 111 |
110
|
ex |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) -> z e. ( a (,) +oo ) ) ) |
| 112 |
94 111
|
biimtrid |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( z e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> z e. ( a (,) +oo ) ) ) |
| 113 |
91 92 93 112
|
ssrd |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) |
| 114 |
90 113
|
jca |
|- ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) |
| 115 |
|
oveq2 |
|- ( b = +oo -> ( a (,) b ) = ( a (,) +oo ) ) |
| 116 |
115
|
eleq2d |
|- ( b = +oo -> ( x e. ( a (,) b ) <-> x e. ( a (,) +oo ) ) ) |
| 117 |
116
|
anbi2d |
|- ( b = +oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) <-> ( a e. RR* /\ x e. ( a (,) +oo ) ) ) ) |
| 118 |
115
|
sseq2d |
|- ( b = +oo -> ( { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) <-> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) |
| 119 |
118
|
anbi2d |
|- ( b = +oo -> ( ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) <-> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) ) |
| 120 |
117 119
|
imbi12d |
|- ( b = +oo -> ( ( ( a e. RR* /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) <-> ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) ) ) |
| 121 |
114 120
|
mpbiri |
|- ( b = +oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) ) |
| 122 |
121
|
impl |
|- ( ( ( b = +oo /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) |
| 123 |
122
|
ancom1s |
|- ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) |
| 124 |
|
eleq2 |
|- ( i = { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> ( x e. i <-> x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } ) ) |
| 125 |
|
sseq1 |
|- ( i = { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> ( i C_ ( a (,) b ) <-> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) |
| 126 |
124 125
|
anbi12d |
|- ( i = { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> ( ( x e. i /\ i C_ ( a (,) b ) ) <-> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) ) |
| 127 |
126
|
rspcev |
|- ( ( { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } e. I /\ ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 128 |
80 123 127
|
syl2anc |
|- ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 129 |
128
|
ancom1s |
|- ( ( ( b = +oo /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 130 |
129
|
expl |
|- ( b = +oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 131 |
8
|
adantl |
|- ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> x e. RR ) |
| 132 |
|
oveq2 |
|- ( b = -oo -> ( a (,) b ) = ( a (,) -oo ) ) |
| 133 |
132
|
eleq2d |
|- ( b = -oo -> ( x e. ( a (,) b ) <-> x e. ( a (,) -oo ) ) ) |
| 134 |
133
|
adantl |
|- ( ( a e. RR* /\ b = -oo ) -> ( x e. ( a (,) b ) <-> x e. ( a (,) -oo ) ) ) |
| 135 |
134
|
pm5.32i |
|- ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) <-> ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) -oo ) ) ) |
| 136 |
|
nltmnf |
|- ( x e. RR* -> -. x < -oo ) |
| 137 |
136
|
intnand |
|- ( x e. RR* -> -. ( a < x /\ x < -oo ) ) |
| 138 |
|
eliooord |
|- ( x e. ( a (,) -oo ) -> ( a < x /\ x < -oo ) ) |
| 139 |
137 138
|
nsyl |
|- ( x e. RR* -> -. x e. ( a (,) -oo ) ) |
| 140 |
139
|
pm2.21d |
|- ( x e. RR* -> ( x e. ( a (,) -oo ) -> ( ( a e. RR* /\ b = -oo ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) ) |
| 141 |
140
|
impd |
|- ( x e. RR* -> ( ( x e. ( a (,) -oo ) /\ ( a e. RR* /\ b = -oo ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 142 |
141
|
ancomsd |
|- ( x e. RR* -> ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) -oo ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 143 |
135 142
|
biimtrid |
|- ( x e. RR* -> ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 144 |
20 143
|
syl |
|- ( x e. RR -> ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 145 |
131 144
|
mpcom |
|- ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 146 |
145
|
ancom1s |
|- ( ( ( b = -oo /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) |
| 147 |
146
|
expl |
|- ( b = -oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 148 |
76 130 147
|
3jaoi |
|- ( ( b e. RR \/ b = +oo \/ b = -oo ) -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 149 |
6 148
|
sylbi |
|- ( b e. RR* -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 150 |
149
|
expdimp |
|- ( ( b e. RR* /\ a e. RR* ) -> ( x e. ( a (,) b ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 151 |
150
|
ancoms |
|- ( ( a e. RR* /\ b e. RR* ) -> ( x e. ( a (,) b ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 152 |
|
eleq2 |
|- ( o = ( a (,) b ) -> ( x e. o <-> x e. ( a (,) b ) ) ) |
| 153 |
|
sseq2 |
|- ( o = ( a (,) b ) -> ( i C_ o <-> i C_ ( a (,) b ) ) ) |
| 154 |
153
|
anbi2d |
|- ( o = ( a (,) b ) -> ( ( x e. i /\ i C_ o ) <-> ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 155 |
154
|
rexbidv |
|- ( o = ( a (,) b ) -> ( E. i e. I ( x e. i /\ i C_ o ) <-> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) |
| 156 |
152 155
|
imbi12d |
|- ( o = ( a (,) b ) -> ( ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) <-> ( x e. ( a (,) b ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) ) |
| 157 |
151 156
|
syl5ibrcom |
|- ( ( a e. RR* /\ b e. RR* ) -> ( o = ( a (,) b ) -> ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) ) |
| 158 |
157
|
rexlimivv |
|- ( E. a e. RR* E. b e. RR* o = ( a (,) b ) -> ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) |
| 159 |
5 158
|
sylbi |
|- ( o e. ran (,) -> ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) |
| 160 |
159
|
rgen |
|- A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) |
| 161 |
160
|
rgenw |
|- A. x e. RR A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) |
| 162 |
|
iooex |
|- (,) e. _V |
| 163 |
162
|
rnex |
|- ran (,) e. _V |
| 164 |
|
unirnioo |
|- RR = U. ran (,) |
| 165 |
1
|
icoreunrn |
|- RR = U. I |
| 166 |
164 165
|
eqtr3i |
|- U. ran (,) = U. I |
| 167 |
|
tgss2 |
|- ( ( ran (,) e. _V /\ U. ran (,) = U. I ) -> ( ( topGen ` ran (,) ) C_ ( topGen ` I ) <-> A. x e. U. ran (,) A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) ) |
| 168 |
163 166 167
|
mp2an |
|- ( ( topGen ` ran (,) ) C_ ( topGen ` I ) <-> A. x e. U. ran (,) A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) |
| 169 |
164
|
raleqi |
|- ( A. x e. RR A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) <-> A. x e. U. ran (,) A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) |
| 170 |
168 169
|
bitr4i |
|- ( ( topGen ` ran (,) ) C_ ( topGen ` I ) <-> A. x e. RR A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) |
| 171 |
161 170
|
mpbir |
|- ( topGen ` ran (,) ) C_ ( topGen ` I ) |