| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relowlssretop.1 |  |-  I = ( [,) " ( RR X. RR ) ) | 
						
							| 2 |  | ioof |  |-  (,) : ( RR* X. RR* ) --> ~P RR | 
						
							| 3 |  | ffn |  |-  ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) | 
						
							| 4 |  | ovelrn |  |-  ( (,) Fn ( RR* X. RR* ) -> ( o e. ran (,) <-> E. a e. RR* E. b e. RR* o = ( a (,) b ) ) ) | 
						
							| 5 | 2 3 4 | mp2b |  |-  ( o e. ran (,) <-> E. a e. RR* E. b e. RR* o = ( a (,) b ) ) | 
						
							| 6 |  | elxr |  |-  ( b e. RR* <-> ( b e. RR \/ b = +oo \/ b = -oo ) ) | 
						
							| 7 |  | simpr |  |-  ( ( a e. RR* /\ b e. RR ) -> b e. RR ) | 
						
							| 8 |  | elioore |  |-  ( x e. ( a (,) b ) -> x e. RR ) | 
						
							| 9 | 7 8 | anim12ci |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x e. RR /\ b e. RR ) ) | 
						
							| 10 | 1 | icoreelrn |  |-  ( ( x e. RR /\ b e. RR ) -> { z e. RR | ( x <_ z /\ z < b ) } e. I ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < b ) } e. I ) | 
						
							| 12 | 8 | adantl |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x e. RR ) | 
						
							| 13 | 8 | leidd |  |-  ( x e. ( a (,) b ) -> x <_ x ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x <_ x ) | 
						
							| 15 | 7 | rexrd |  |-  ( ( a e. RR* /\ b e. RR ) -> b e. RR* ) | 
						
							| 16 |  | elioo1 |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( x e. ( a (,) b ) <-> ( x e. RR* /\ a < x /\ x < b ) ) ) | 
						
							| 17 | 15 16 | syldan |  |-  ( ( a e. RR* /\ b e. RR ) -> ( x e. ( a (,) b ) <-> ( x e. RR* /\ a < x /\ x < b ) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x e. RR* /\ a < x /\ x < b ) ) | 
						
							| 19 | 18 | simp3d |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x < b ) | 
						
							| 20 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 21 | 20 | 3anim1i |  |-  ( ( x e. RR /\ x <_ x /\ x < b ) -> ( x e. RR* /\ x <_ x /\ x < b ) ) | 
						
							| 22 |  | rexr |  |-  ( b e. RR -> b e. RR* ) | 
						
							| 23 |  | elico1 |  |-  ( ( x e. RR* /\ b e. RR* ) -> ( x e. ( x [,) b ) <-> ( x e. RR* /\ x <_ x /\ x < b ) ) ) | 
						
							| 24 | 20 22 23 | syl2an |  |-  ( ( x e. RR /\ b e. RR ) -> ( x e. ( x [,) b ) <-> ( x e. RR* /\ x <_ x /\ x < b ) ) ) | 
						
							| 25 | 24 | biimprd |  |-  ( ( x e. RR /\ b e. RR ) -> ( ( x e. RR* /\ x <_ x /\ x < b ) -> x e. ( x [,) b ) ) ) | 
						
							| 26 | 9 21 25 | syl2im |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( ( x e. RR /\ x <_ x /\ x < b ) -> x e. ( x [,) b ) ) ) | 
						
							| 27 |  | icoreval |  |-  ( ( x e. RR /\ b e. RR ) -> ( x [,) b ) = { z e. RR | ( x <_ z /\ z < b ) } ) | 
						
							| 28 | 9 27 | syl |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x [,) b ) = { z e. RR | ( x <_ z /\ z < b ) } ) | 
						
							| 29 | 28 | eleq2d |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( x e. ( x [,) b ) <-> x e. { z e. RR | ( x <_ z /\ z < b ) } ) ) | 
						
							| 30 | 26 29 | sylibd |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> ( ( x e. RR /\ x <_ x /\ x < b ) -> x e. { z e. RR | ( x <_ z /\ z < b ) } ) ) | 
						
							| 31 | 12 14 19 30 | mp3and |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> x e. { z e. RR | ( x <_ z /\ z < b ) } ) | 
						
							| 32 |  | nfv |  |-  F/ z ( ( a e. RR* /\ b e. RR* ) /\ x e. ( a (,) b ) ) | 
						
							| 33 |  | nfrab1 |  |-  F/_ z { z e. RR | ( x <_ z /\ z < b ) } | 
						
							| 34 |  | nfcv |  |-  F/_ z ( a (,) b ) | 
						
							| 35 |  | iooval |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( a (,) b ) = { x e. RR* | ( a < x /\ x < b ) } ) | 
						
							| 36 | 35 | eleq2d |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( x e. ( a (,) b ) <-> x e. { x e. RR* | ( a < x /\ x < b ) } ) ) | 
						
							| 37 | 36 | anbi1d |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( ( x e. ( a (,) b ) /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) <-> ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) ) | 
						
							| 38 | 37 | pm5.32i |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ ( x e. ( a (,) b ) /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) <-> ( ( a e. RR* /\ b e. RR* ) /\ ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) ) | 
						
							| 39 |  | rabid |  |-  ( x e. { x e. RR* | ( a < x /\ x < b ) } <-> ( x e. RR* /\ ( a < x /\ x < b ) ) ) | 
						
							| 40 |  | rabid |  |-  ( z e. { z e. RR | ( x <_ z /\ z < b ) } <-> ( z e. RR /\ ( x <_ z /\ z < b ) ) ) | 
						
							| 41 | 39 40 | anbi12i |  |-  ( ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) <-> ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) | 
						
							| 42 |  | simpl |  |-  ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> z e. RR ) | 
						
							| 43 | 42 | rexrd |  |-  ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> z e. RR* ) | 
						
							| 44 | 43 | ad2antll |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. RR* ) | 
						
							| 45 |  | simpl |  |-  ( ( x e. RR* /\ ( a < x /\ x < b ) ) -> x e. RR* ) | 
						
							| 46 | 45 43 | anim12i |  |-  ( ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) -> ( x e. RR* /\ z e. RR* ) ) | 
						
							| 47 | 46 | anim2i |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a e. RR* /\ ( x e. RR* /\ z e. RR* ) ) ) | 
						
							| 48 |  | 3anass |  |-  ( ( a e. RR* /\ x e. RR* /\ z e. RR* ) <-> ( a e. RR* /\ ( x e. RR* /\ z e. RR* ) ) ) | 
						
							| 49 | 47 48 | sylibr |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a e. RR* /\ x e. RR* /\ z e. RR* ) ) | 
						
							| 50 |  | simprl |  |-  ( ( x e. RR* /\ ( a < x /\ x < b ) ) -> a < x ) | 
						
							| 51 |  | simprl |  |-  ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> x <_ z ) | 
						
							| 52 | 50 51 | anim12i |  |-  ( ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) -> ( a < x /\ x <_ z ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a < x /\ x <_ z ) ) | 
						
							| 54 |  | xrltletr |  |-  ( ( a e. RR* /\ x e. RR* /\ z e. RR* ) -> ( ( a < x /\ x <_ z ) -> a < z ) ) | 
						
							| 55 | 49 53 54 | sylc |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> a < z ) | 
						
							| 56 |  | simprr |  |-  ( ( z e. RR /\ ( x <_ z /\ z < b ) ) -> z < b ) | 
						
							| 57 | 56 | ad2antll |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z < b ) | 
						
							| 58 | 55 57 | jca |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a < z /\ z < b ) ) | 
						
							| 59 |  | rabid |  |-  ( z e. { z e. RR* | ( a < z /\ z < b ) } <-> ( z e. RR* /\ ( a < z /\ z < b ) ) ) | 
						
							| 60 | 44 58 59 | sylanbrc |  |-  ( ( a e. RR* /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. { z e. RR* | ( a < z /\ z < b ) } ) | 
						
							| 61 | 60 | adantlr |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. { z e. RR* | ( a < z /\ z < b ) } ) | 
						
							| 62 |  | iooval |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( a (,) b ) = { z e. RR* | ( a < z /\ z < b ) } ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> ( a (,) b ) = { z e. RR* | ( a < z /\ z < b ) } ) | 
						
							| 64 | 61 63 | eleqtrrd |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ ( ( x e. RR* /\ ( a < x /\ x < b ) ) /\ ( z e. RR /\ ( x <_ z /\ z < b ) ) ) ) -> z e. ( a (,) b ) ) | 
						
							| 65 | 41 64 | sylan2b |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ ( x e. { x e. RR* | ( a < x /\ x < b ) } /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) -> z e. ( a (,) b ) ) | 
						
							| 66 | 38 65 | sylbi |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ ( x e. ( a (,) b ) /\ z e. { z e. RR | ( x <_ z /\ z < b ) } ) ) -> z e. ( a (,) b ) ) | 
						
							| 67 | 66 | expr |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ x e. ( a (,) b ) ) -> ( z e. { z e. RR | ( x <_ z /\ z < b ) } -> z e. ( a (,) b ) ) ) | 
						
							| 68 | 32 33 34 67 | ssrd |  |-  ( ( ( a e. RR* /\ b e. RR* ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) | 
						
							| 69 | 22 68 | sylanl2 |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) | 
						
							| 70 |  | eleq2 |  |-  ( i = { z e. RR | ( x <_ z /\ z < b ) } -> ( x e. i <-> x e. { z e. RR | ( x <_ z /\ z < b ) } ) ) | 
						
							| 71 |  | sseq1 |  |-  ( i = { z e. RR | ( x <_ z /\ z < b ) } -> ( i C_ ( a (,) b ) <-> { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) ) | 
						
							| 72 | 70 71 | anbi12d |  |-  ( i = { z e. RR | ( x <_ z /\ z < b ) } -> ( ( x e. i /\ i C_ ( a (,) b ) ) <-> ( x e. { z e. RR | ( x <_ z /\ z < b ) } /\ { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) ) ) | 
						
							| 73 | 72 | rspcev |  |-  ( ( { z e. RR | ( x <_ z /\ z < b ) } e. I /\ ( x e. { z e. RR | ( x <_ z /\ z < b ) } /\ { z e. RR | ( x <_ z /\ z < b ) } C_ ( a (,) b ) ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 74 | 11 31 69 73 | syl12anc |  |-  ( ( ( a e. RR* /\ b e. RR ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 75 | 74 | ancom1s |  |-  ( ( ( b e. RR /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 76 | 75 | expl |  |-  ( b e. RR -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 77 | 8 | adantl |  |-  ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> x e. RR ) | 
						
							| 78 |  | peano2re |  |-  ( x e. RR -> ( x + 1 ) e. RR ) | 
						
							| 79 | 1 | icoreelrn |  |-  ( ( x e. RR /\ ( x + 1 ) e. RR ) -> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } e. I ) | 
						
							| 80 | 77 78 79 | syl2anc2 |  |-  ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } e. I ) | 
						
							| 81 |  | elioore |  |-  ( x e. ( a (,) +oo ) -> x e. RR ) | 
						
							| 82 | 81 | adantl |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x e. RR ) | 
						
							| 83 | 82 | leidd |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x <_ x ) | 
						
							| 84 | 82 | ltp1d |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x < ( x + 1 ) ) | 
						
							| 85 | 82 83 84 | jca32 |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( x e. RR /\ ( x <_ x /\ x < ( x + 1 ) ) ) ) | 
						
							| 86 |  | breq2 |  |-  ( z = x -> ( x <_ z <-> x <_ x ) ) | 
						
							| 87 |  | breq1 |  |-  ( z = x -> ( z < ( x + 1 ) <-> x < ( x + 1 ) ) ) | 
						
							| 88 | 86 87 | anbi12d |  |-  ( z = x -> ( ( x <_ z /\ z < ( x + 1 ) ) <-> ( x <_ x /\ x < ( x + 1 ) ) ) ) | 
						
							| 89 | 88 | elrab |  |-  ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } <-> ( x e. RR /\ ( x <_ x /\ x < ( x + 1 ) ) ) ) | 
						
							| 90 | 85 89 | sylibr |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } ) | 
						
							| 91 |  | nfv |  |-  F/ z ( a e. RR* /\ x e. ( a (,) +oo ) ) | 
						
							| 92 |  | nfrab1 |  |-  F/_ z { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } | 
						
							| 93 |  | nfcv |  |-  F/_ z ( a (,) +oo ) | 
						
							| 94 |  | rabid |  |-  ( z e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } <-> ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) | 
						
							| 95 |  | simprl |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> z e. RR ) | 
						
							| 96 |  | simpll |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> a e. RR* ) | 
						
							| 97 | 82 | adantr |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> x e. RR ) | 
						
							| 98 | 97 | rexrd |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> x e. RR* ) | 
						
							| 99 | 95 | rexrd |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> z e. RR* ) | 
						
							| 100 |  | elioopnf |  |-  ( a e. RR* -> ( x e. ( a (,) +oo ) <-> ( x e. RR /\ a < x ) ) ) | 
						
							| 101 | 100 | simplbda |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> a < x ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> a < x ) | 
						
							| 103 |  | simprl |  |-  ( ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) -> x <_ z ) | 
						
							| 104 | 103 | adantl |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> x <_ z ) | 
						
							| 105 | 96 98 99 102 104 | xrltletrd |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> a < z ) | 
						
							| 106 |  | elioopnf |  |-  ( a e. RR* -> ( z e. ( a (,) +oo ) <-> ( z e. RR /\ a < z ) ) ) | 
						
							| 107 | 106 | biimprd |  |-  ( a e. RR* -> ( ( z e. RR /\ a < z ) -> z e. ( a (,) +oo ) ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( ( z e. RR /\ a < z ) -> z e. ( a (,) +oo ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> ( ( z e. RR /\ a < z ) -> z e. ( a (,) +oo ) ) ) | 
						
							| 110 | 95 105 109 | mp2and |  |-  ( ( ( a e. RR* /\ x e. ( a (,) +oo ) ) /\ ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) ) -> z e. ( a (,) +oo ) ) | 
						
							| 111 | 110 | ex |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( ( z e. RR /\ ( x <_ z /\ z < ( x + 1 ) ) ) -> z e. ( a (,) +oo ) ) ) | 
						
							| 112 | 94 111 | biimtrid |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( z e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> z e. ( a (,) +oo ) ) ) | 
						
							| 113 | 91 92 93 112 | ssrd |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) | 
						
							| 114 | 90 113 | jca |  |-  ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) | 
						
							| 115 |  | oveq2 |  |-  ( b = +oo -> ( a (,) b ) = ( a (,) +oo ) ) | 
						
							| 116 | 115 | eleq2d |  |-  ( b = +oo -> ( x e. ( a (,) b ) <-> x e. ( a (,) +oo ) ) ) | 
						
							| 117 | 116 | anbi2d |  |-  ( b = +oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) <-> ( a e. RR* /\ x e. ( a (,) +oo ) ) ) ) | 
						
							| 118 | 115 | sseq2d |  |-  ( b = +oo -> ( { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) <-> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) | 
						
							| 119 | 118 | anbi2d |  |-  ( b = +oo -> ( ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) <-> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) ) | 
						
							| 120 | 117 119 | imbi12d |  |-  ( b = +oo -> ( ( ( a e. RR* /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) <-> ( ( a e. RR* /\ x e. ( a (,) +oo ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) +oo ) ) ) ) ) | 
						
							| 121 | 114 120 | mpbiri |  |-  ( b = +oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) ) | 
						
							| 122 | 121 | impl |  |-  ( ( ( b = +oo /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) | 
						
							| 123 | 122 | ancom1s |  |-  ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) | 
						
							| 124 |  | eleq2 |  |-  ( i = { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> ( x e. i <-> x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } ) ) | 
						
							| 125 |  | sseq1 |  |-  ( i = { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> ( i C_ ( a (,) b ) <-> { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) | 
						
							| 126 | 124 125 | anbi12d |  |-  ( i = { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } -> ( ( x e. i /\ i C_ ( a (,) b ) ) <-> ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) ) | 
						
							| 127 | 126 | rspcev |  |-  ( ( { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } e. I /\ ( x e. { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } /\ { z e. RR | ( x <_ z /\ z < ( x + 1 ) ) } C_ ( a (,) b ) ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 128 | 80 123 127 | syl2anc |  |-  ( ( ( a e. RR* /\ b = +oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 129 | 128 | ancom1s |  |-  ( ( ( b = +oo /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 130 | 129 | expl |  |-  ( b = +oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 131 | 8 | adantl |  |-  ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> x e. RR ) | 
						
							| 132 |  | oveq2 |  |-  ( b = -oo -> ( a (,) b ) = ( a (,) -oo ) ) | 
						
							| 133 | 132 | eleq2d |  |-  ( b = -oo -> ( x e. ( a (,) b ) <-> x e. ( a (,) -oo ) ) ) | 
						
							| 134 | 133 | adantl |  |-  ( ( a e. RR* /\ b = -oo ) -> ( x e. ( a (,) b ) <-> x e. ( a (,) -oo ) ) ) | 
						
							| 135 | 134 | pm5.32i |  |-  ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) <-> ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) -oo ) ) ) | 
						
							| 136 |  | nltmnf |  |-  ( x e. RR* -> -. x < -oo ) | 
						
							| 137 | 136 | intnand |  |-  ( x e. RR* -> -. ( a < x /\ x < -oo ) ) | 
						
							| 138 |  | eliooord |  |-  ( x e. ( a (,) -oo ) -> ( a < x /\ x < -oo ) ) | 
						
							| 139 | 137 138 | nsyl |  |-  ( x e. RR* -> -. x e. ( a (,) -oo ) ) | 
						
							| 140 | 139 | pm2.21d |  |-  ( x e. RR* -> ( x e. ( a (,) -oo ) -> ( ( a e. RR* /\ b = -oo ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) ) | 
						
							| 141 | 140 | impd |  |-  ( x e. RR* -> ( ( x e. ( a (,) -oo ) /\ ( a e. RR* /\ b = -oo ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 142 | 141 | ancomsd |  |-  ( x e. RR* -> ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) -oo ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 143 | 135 142 | biimtrid |  |-  ( x e. RR* -> ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 144 | 20 143 | syl |  |-  ( x e. RR -> ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 145 | 131 144 | mpcom |  |-  ( ( ( a e. RR* /\ b = -oo ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 146 | 145 | ancom1s |  |-  ( ( ( b = -oo /\ a e. RR* ) /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) | 
						
							| 147 | 146 | expl |  |-  ( b = -oo -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 148 | 76 130 147 | 3jaoi |  |-  ( ( b e. RR \/ b = +oo \/ b = -oo ) -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 149 | 6 148 | sylbi |  |-  ( b e. RR* -> ( ( a e. RR* /\ x e. ( a (,) b ) ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 150 | 149 | expdimp |  |-  ( ( b e. RR* /\ a e. RR* ) -> ( x e. ( a (,) b ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 151 | 150 | ancoms |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( x e. ( a (,) b ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 152 |  | eleq2 |  |-  ( o = ( a (,) b ) -> ( x e. o <-> x e. ( a (,) b ) ) ) | 
						
							| 153 |  | sseq2 |  |-  ( o = ( a (,) b ) -> ( i C_ o <-> i C_ ( a (,) b ) ) ) | 
						
							| 154 | 153 | anbi2d |  |-  ( o = ( a (,) b ) -> ( ( x e. i /\ i C_ o ) <-> ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 155 | 154 | rexbidv |  |-  ( o = ( a (,) b ) -> ( E. i e. I ( x e. i /\ i C_ o ) <-> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) | 
						
							| 156 | 152 155 | imbi12d |  |-  ( o = ( a (,) b ) -> ( ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) <-> ( x e. ( a (,) b ) -> E. i e. I ( x e. i /\ i C_ ( a (,) b ) ) ) ) ) | 
						
							| 157 | 151 156 | syl5ibrcom |  |-  ( ( a e. RR* /\ b e. RR* ) -> ( o = ( a (,) b ) -> ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) ) | 
						
							| 158 | 157 | rexlimivv |  |-  ( E. a e. RR* E. b e. RR* o = ( a (,) b ) -> ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) | 
						
							| 159 | 5 158 | sylbi |  |-  ( o e. ran (,) -> ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) | 
						
							| 160 | 159 | rgen |  |-  A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) | 
						
							| 161 | 160 | rgenw |  |-  A. x e. RR A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) | 
						
							| 162 |  | iooex |  |-  (,) e. _V | 
						
							| 163 | 162 | rnex |  |-  ran (,) e. _V | 
						
							| 164 |  | unirnioo |  |-  RR = U. ran (,) | 
						
							| 165 | 1 | icoreunrn |  |-  RR = U. I | 
						
							| 166 | 164 165 | eqtr3i |  |-  U. ran (,) = U. I | 
						
							| 167 |  | tgss2 |  |-  ( ( ran (,) e. _V /\ U. ran (,) = U. I ) -> ( ( topGen ` ran (,) ) C_ ( topGen ` I ) <-> A. x e. U. ran (,) A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) ) | 
						
							| 168 | 163 166 167 | mp2an |  |-  ( ( topGen ` ran (,) ) C_ ( topGen ` I ) <-> A. x e. U. ran (,) A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) | 
						
							| 169 | 164 | raleqi |  |-  ( A. x e. RR A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) <-> A. x e. U. ran (,) A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) | 
						
							| 170 | 168 169 | bitr4i |  |-  ( ( topGen ` ran (,) ) C_ ( topGen ` I ) <-> A. x e. RR A. o e. ran (,) ( x e. o -> E. i e. I ( x e. i /\ i C_ o ) ) ) | 
						
							| 171 | 161 170 | mpbir |  |-  ( topGen ` ran (,) ) C_ ( topGen ` I ) |