| Step |
Hyp |
Ref |
Expression |
| 1 |
|
icoreunrn.1 |
|- I = ( [,) " ( RR X. RR ) ) |
| 2 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 3 |
|
peano2re |
|- ( x e. RR -> ( x + 1 ) e. RR ) |
| 4 |
|
rexr |
|- ( ( x + 1 ) e. RR -> ( x + 1 ) e. RR* ) |
| 5 |
3 4
|
syl |
|- ( x e. RR -> ( x + 1 ) e. RR* ) |
| 6 |
|
ltp1 |
|- ( x e. RR -> x < ( x + 1 ) ) |
| 7 |
|
lbico1 |
|- ( ( x e. RR* /\ ( x + 1 ) e. RR* /\ x < ( x + 1 ) ) -> x e. ( x [,) ( x + 1 ) ) ) |
| 8 |
2 5 6 7
|
syl3anc |
|- ( x e. RR -> x e. ( x [,) ( x + 1 ) ) ) |
| 9 |
|
df-ov |
|- ( x [,) ( x + 1 ) ) = ( [,) ` <. x , ( x + 1 ) >. ) |
| 10 |
8 9
|
eleqtrdi |
|- ( x e. RR -> x e. ( [,) ` <. x , ( x + 1 ) >. ) ) |
| 11 |
|
opelxpi |
|- ( ( x e. RR /\ ( x + 1 ) e. RR ) -> <. x , ( x + 1 ) >. e. ( RR X. RR ) ) |
| 12 |
3 11
|
mpdan |
|- ( x e. RR -> <. x , ( x + 1 ) >. e. ( RR X. RR ) ) |
| 13 |
|
fvres |
|- ( <. x , ( x + 1 ) >. e. ( RR X. RR ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) = ( [,) ` <. x , ( x + 1 ) >. ) ) |
| 14 |
12 13
|
syl |
|- ( x e. RR -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) = ( [,) ` <. x , ( x + 1 ) >. ) ) |
| 15 |
10 14
|
eleqtrrd |
|- ( x e. RR -> x e. ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) ) |
| 16 |
|
icoreresf |
|- ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR |
| 17 |
16
|
fdmi |
|- dom ( [,) |` ( RR X. RR ) ) = ( RR X. RR ) |
| 18 |
11 17
|
eleqtrrdi |
|- ( ( x e. RR /\ ( x + 1 ) e. RR ) -> <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) ) |
| 19 |
3 18
|
mpdan |
|- ( x e. RR -> <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) ) |
| 20 |
|
ffun |
|- ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> Fun ( [,) |` ( RR X. RR ) ) ) |
| 21 |
16 20
|
ax-mp |
|- Fun ( [,) |` ( RR X. RR ) ) |
| 22 |
|
fvelrn |
|- ( ( Fun ( [,) |` ( RR X. RR ) ) /\ <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. ran ( [,) |` ( RR X. RR ) ) ) |
| 23 |
21 22
|
mpan |
|- ( <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. ran ( [,) |` ( RR X. RR ) ) ) |
| 24 |
|
df-ima |
|- ( [,) " ( RR X. RR ) ) = ran ( [,) |` ( RR X. RR ) ) |
| 25 |
1 24
|
eqtri |
|- I = ran ( [,) |` ( RR X. RR ) ) |
| 26 |
23 25
|
eleqtrrdi |
|- ( <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. I ) |
| 27 |
19 26
|
syl |
|- ( x e. RR -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. I ) |
| 28 |
|
elunii |
|- ( ( x e. ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) /\ ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. I ) -> x e. U. I ) |
| 29 |
15 27 28
|
syl2anc |
|- ( x e. RR -> x e. U. I ) |
| 30 |
29
|
ssriv |
|- RR C_ U. I |
| 31 |
|
frn |
|- ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> ran ( [,) |` ( RR X. RR ) ) C_ ~P RR ) |
| 32 |
16 31
|
ax-mp |
|- ran ( [,) |` ( RR X. RR ) ) C_ ~P RR |
| 33 |
25 32
|
eqsstri |
|- I C_ ~P RR |
| 34 |
|
uniss |
|- ( I C_ ~P RR -> U. I C_ U. ~P RR ) |
| 35 |
|
unipw |
|- U. ~P RR = RR |
| 36 |
34 35
|
sseqtrdi |
|- ( I C_ ~P RR -> U. I C_ RR ) |
| 37 |
33 36
|
ax-mp |
|- U. I C_ RR |
| 38 |
30 37
|
eqssi |
|- RR = U. I |