| Step | Hyp | Ref | Expression | 
						
							| 1 |  | icoreunrn.1 |  |-  I = ( [,) " ( RR X. RR ) ) | 
						
							| 2 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 3 |  | peano2re |  |-  ( x e. RR -> ( x + 1 ) e. RR ) | 
						
							| 4 |  | rexr |  |-  ( ( x + 1 ) e. RR -> ( x + 1 ) e. RR* ) | 
						
							| 5 | 3 4 | syl |  |-  ( x e. RR -> ( x + 1 ) e. RR* ) | 
						
							| 6 |  | ltp1 |  |-  ( x e. RR -> x < ( x + 1 ) ) | 
						
							| 7 |  | lbico1 |  |-  ( ( x e. RR* /\ ( x + 1 ) e. RR* /\ x < ( x + 1 ) ) -> x e. ( x [,) ( x + 1 ) ) ) | 
						
							| 8 | 2 5 6 7 | syl3anc |  |-  ( x e. RR -> x e. ( x [,) ( x + 1 ) ) ) | 
						
							| 9 |  | df-ov |  |-  ( x [,) ( x + 1 ) ) = ( [,) ` <. x , ( x + 1 ) >. ) | 
						
							| 10 | 8 9 | eleqtrdi |  |-  ( x e. RR -> x e. ( [,) ` <. x , ( x + 1 ) >. ) ) | 
						
							| 11 |  | opelxpi |  |-  ( ( x e. RR /\ ( x + 1 ) e. RR ) -> <. x , ( x + 1 ) >. e. ( RR X. RR ) ) | 
						
							| 12 | 3 11 | mpdan |  |-  ( x e. RR -> <. x , ( x + 1 ) >. e. ( RR X. RR ) ) | 
						
							| 13 |  | fvres |  |-  ( <. x , ( x + 1 ) >. e. ( RR X. RR ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) = ( [,) ` <. x , ( x + 1 ) >. ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( x e. RR -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) = ( [,) ` <. x , ( x + 1 ) >. ) ) | 
						
							| 15 | 10 14 | eleqtrrd |  |-  ( x e. RR -> x e. ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) ) | 
						
							| 16 |  | icoreresf |  |-  ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR | 
						
							| 17 | 16 | fdmi |  |-  dom ( [,) |` ( RR X. RR ) ) = ( RR X. RR ) | 
						
							| 18 | 11 17 | eleqtrrdi |  |-  ( ( x e. RR /\ ( x + 1 ) e. RR ) -> <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) ) | 
						
							| 19 | 3 18 | mpdan |  |-  ( x e. RR -> <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) ) | 
						
							| 20 |  | ffun |  |-  ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> Fun ( [,) |` ( RR X. RR ) ) ) | 
						
							| 21 | 16 20 | ax-mp |  |-  Fun ( [,) |` ( RR X. RR ) ) | 
						
							| 22 |  | fvelrn |  |-  ( ( Fun ( [,) |` ( RR X. RR ) ) /\ <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. ran ( [,) |` ( RR X. RR ) ) ) | 
						
							| 23 | 21 22 | mpan |  |-  ( <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. ran ( [,) |` ( RR X. RR ) ) ) | 
						
							| 24 |  | df-ima |  |-  ( [,) " ( RR X. RR ) ) = ran ( [,) |` ( RR X. RR ) ) | 
						
							| 25 | 1 24 | eqtri |  |-  I = ran ( [,) |` ( RR X. RR ) ) | 
						
							| 26 | 23 25 | eleqtrrdi |  |-  ( <. x , ( x + 1 ) >. e. dom ( [,) |` ( RR X. RR ) ) -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. I ) | 
						
							| 27 | 19 26 | syl |  |-  ( x e. RR -> ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. I ) | 
						
							| 28 |  | elunii |  |-  ( ( x e. ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) /\ ( ( [,) |` ( RR X. RR ) ) ` <. x , ( x + 1 ) >. ) e. I ) -> x e. U. I ) | 
						
							| 29 | 15 27 28 | syl2anc |  |-  ( x e. RR -> x e. U. I ) | 
						
							| 30 | 29 | ssriv |  |-  RR C_ U. I | 
						
							| 31 |  | frn |  |-  ( ( [,) |` ( RR X. RR ) ) : ( RR X. RR ) --> ~P RR -> ran ( [,) |` ( RR X. RR ) ) C_ ~P RR ) | 
						
							| 32 | 16 31 | ax-mp |  |-  ran ( [,) |` ( RR X. RR ) ) C_ ~P RR | 
						
							| 33 | 25 32 | eqsstri |  |-  I C_ ~P RR | 
						
							| 34 |  | uniss |  |-  ( I C_ ~P RR -> U. I C_ U. ~P RR ) | 
						
							| 35 |  | unipw |  |-  U. ~P RR = RR | 
						
							| 36 | 34 35 | sseqtrdi |  |-  ( I C_ ~P RR -> U. I C_ RR ) | 
						
							| 37 | 33 36 | ax-mp |  |-  U. I C_ RR | 
						
							| 38 | 30 37 | eqssi |  |-  RR = U. I |