Description: The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | istoprelowl.1 | |- I = ( [,) " ( RR X. RR ) ) |
|
Assertion | istoprelowl | |- ( topGen ` I ) e. ( TopOn ` RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istoprelowl.1 | |- I = ( [,) " ( RR X. RR ) ) |
|
2 | 1 | isbasisrelowl | |- I e. TopBases |
3 | tgtopon | |- ( I e. TopBases -> ( topGen ` I ) e. ( TopOn ` U. I ) ) |
|
4 | 1 | icoreunrn | |- RR = U. I |
5 | 4 | eqcomi | |- U. I = RR |
6 | 5 | fveq2i | |- ( TopOn ` U. I ) = ( TopOn ` RR ) |
7 | 3 6 | eleqtrdi | |- ( I e. TopBases -> ( topGen ` I ) e. ( TopOn ` RR ) ) |
8 | 2 7 | ax-mp | |- ( topGen ` I ) e. ( TopOn ` RR ) |