Metamath Proof Explorer


Theorem istoprelowl

Description: The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020)

Ref Expression
Hypothesis istoprelowl.1
|- I = ( [,) " ( RR X. RR ) )
Assertion istoprelowl
|- ( topGen ` I ) e. ( TopOn ` RR )

Proof

Step Hyp Ref Expression
1 istoprelowl.1
 |-  I = ( [,) " ( RR X. RR ) )
2 1 isbasisrelowl
 |-  I e. TopBases
3 tgtopon
 |-  ( I e. TopBases -> ( topGen ` I ) e. ( TopOn ` U. I ) )
4 1 icoreunrn
 |-  RR = U. I
5 4 eqcomi
 |-  U. I = RR
6 5 fveq2i
 |-  ( TopOn ` U. I ) = ( TopOn ` RR )
7 3 6 eleqtrdi
 |-  ( I e. TopBases -> ( topGen ` I ) e. ( TopOn ` RR ) )
8 2 7 ax-mp
 |-  ( topGen ` I ) e. ( TopOn ` RR )