Description: The set of all closed-below, open-above intervals of reals generate a topology on the reals. (Contributed by ML, 27-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | istoprelowl.1 | |- I = ( [,) " ( RR X. RR ) ) | |
| Assertion | istoprelowl | |- ( topGen ` I ) e. ( TopOn ` RR ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | istoprelowl.1 | |- I = ( [,) " ( RR X. RR ) ) | |
| 2 | 1 | isbasisrelowl | |- I e. TopBases | 
| 3 | tgtopon | |- ( I e. TopBases -> ( topGen ` I ) e. ( TopOn ` U. I ) ) | |
| 4 | 1 | icoreunrn | |- RR = U. I | 
| 5 | 4 | eqcomi | |- U. I = RR | 
| 6 | 5 | fveq2i | |- ( TopOn ` U. I ) = ( TopOn ` RR ) | 
| 7 | 3 6 | eleqtrdi | |- ( I e. TopBases -> ( topGen ` I ) e. ( TopOn ` RR ) ) | 
| 8 | 2 7 | ax-mp | |- ( topGen ` I ) e. ( TopOn ` RR ) |