Step |
Hyp |
Ref |
Expression |
1 |
|
relowlpssretop.1 |
|- I = ( [,) " ( RR X. RR ) ) |
2 |
1
|
relowlssretop |
|- ( topGen ` ran (,) ) C_ ( topGen ` I ) |
3 |
|
2re |
|- 2 e. RR |
4 |
|
1lt2 |
|- 1 < 2 |
5 |
|
ovex |
|- ( 1 [,) c ) e. _V |
6 |
|
sbcan |
|- ( [. 1 / x ]. ( c e. RR /\ x < c ) <-> ( [. 1 / x ]. c e. RR /\ [. 1 / x ]. x < c ) ) |
7 |
|
1re |
|- 1 e. RR |
8 |
|
sbcg |
|- ( 1 e. RR -> ( [. 1 / x ]. c e. RR <-> c e. RR ) ) |
9 |
7 8
|
ax-mp |
|- ( [. 1 / x ]. c e. RR <-> c e. RR ) |
10 |
|
sbcbr123 |
|- ( [. 1 / x ]. x < c <-> [_ 1 / x ]_ x [_ 1 / x ]_ < [_ 1 / x ]_ c ) |
11 |
|
csbvarg |
|- ( 1 e. RR -> [_ 1 / x ]_ x = 1 ) |
12 |
7 11
|
ax-mp |
|- [_ 1 / x ]_ x = 1 |
13 |
|
csbconstg |
|- ( 1 e. RR -> [_ 1 / x ]_ c = c ) |
14 |
7 13
|
ax-mp |
|- [_ 1 / x ]_ c = c |
15 |
12 14
|
breq12i |
|- ( [_ 1 / x ]_ x [_ 1 / x ]_ < [_ 1 / x ]_ c <-> 1 [_ 1 / x ]_ < c ) |
16 |
|
csbconstg |
|- ( 1 e. RR -> [_ 1 / x ]_ < = < ) |
17 |
7 16
|
ax-mp |
|- [_ 1 / x ]_ < = < |
18 |
17
|
breqi |
|- ( 1 [_ 1 / x ]_ < c <-> 1 < c ) |
19 |
10 15 18
|
3bitri |
|- ( [. 1 / x ]. x < c <-> 1 < c ) |
20 |
9 19
|
anbi12i |
|- ( ( [. 1 / x ]. c e. RR /\ [. 1 / x ]. x < c ) <-> ( c e. RR /\ 1 < c ) ) |
21 |
6 20
|
bitri |
|- ( [. 1 / x ]. ( c e. RR /\ x < c ) <-> ( c e. RR /\ 1 < c ) ) |
22 |
|
sbceqg |
|- ( 1 e. RR -> ( [. 1 / x ]. i = ( x [,) c ) <-> [_ 1 / x ]_ i = [_ 1 / x ]_ ( x [,) c ) ) ) |
23 |
7 22
|
ax-mp |
|- ( [. 1 / x ]. i = ( x [,) c ) <-> [_ 1 / x ]_ i = [_ 1 / x ]_ ( x [,) c ) ) |
24 |
|
csbconstg |
|- ( 1 e. RR -> [_ 1 / x ]_ i = i ) |
25 |
7 24
|
ax-mp |
|- [_ 1 / x ]_ i = i |
26 |
|
csbov123 |
|- [_ 1 / x ]_ ( x [,) c ) = ( [_ 1 / x ]_ x [_ 1 / x ]_ [,) [_ 1 / x ]_ c ) |
27 |
|
csbconstg |
|- ( 1 e. RR -> [_ 1 / x ]_ [,) = [,) ) |
28 |
7 27
|
ax-mp |
|- [_ 1 / x ]_ [,) = [,) |
29 |
12 14 28
|
oveq123i |
|- ( [_ 1 / x ]_ x [_ 1 / x ]_ [,) [_ 1 / x ]_ c ) = ( 1 [,) c ) |
30 |
26 29
|
eqtri |
|- [_ 1 / x ]_ ( x [,) c ) = ( 1 [,) c ) |
31 |
25 30
|
eqeq12i |
|- ( [_ 1 / x ]_ i = [_ 1 / x ]_ ( x [,) c ) <-> i = ( 1 [,) c ) ) |
32 |
23 31
|
bitri |
|- ( [. 1 / x ]. i = ( x [,) c ) <-> i = ( 1 [,) c ) ) |
33 |
|
sbcan |
|- ( [. 1 / x ]. ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) <-> ( [. 1 / x ]. ( c e. RR /\ x < c ) /\ [. 1 / x ]. i = ( x [,) c ) ) ) |
34 |
|
simpr |
|- ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> x e. RR ) |
35 |
|
simpl |
|- ( ( x e. RR /\ c e. RR ) -> x e. RR ) |
36 |
|
leid |
|- ( x e. RR -> x <_ x ) |
37 |
35 36
|
jccir |
|- ( ( x e. RR /\ c e. RR ) -> ( x e. RR /\ x <_ x ) ) |
38 |
|
rexr |
|- ( c e. RR -> c e. RR* ) |
39 |
|
elico2 |
|- ( ( x e. RR /\ c e. RR* ) -> ( x e. ( x [,) c ) <-> ( x e. RR /\ x <_ x /\ x < c ) ) ) |
40 |
38 39
|
sylan2 |
|- ( ( x e. RR /\ c e. RR ) -> ( x e. ( x [,) c ) <-> ( x e. RR /\ x <_ x /\ x < c ) ) ) |
41 |
|
df-3an |
|- ( ( x e. RR /\ x <_ x /\ x < c ) <-> ( ( x e. RR /\ x <_ x ) /\ x < c ) ) |
42 |
40 41
|
bitrdi |
|- ( ( x e. RR /\ c e. RR ) -> ( x e. ( x [,) c ) <-> ( ( x e. RR /\ x <_ x ) /\ x < c ) ) ) |
43 |
42
|
baibd |
|- ( ( ( x e. RR /\ c e. RR ) /\ ( x e. RR /\ x <_ x ) ) -> ( x e. ( x [,) c ) <-> x < c ) ) |
44 |
37 43
|
mpdan |
|- ( ( x e. RR /\ c e. RR ) -> ( x e. ( x [,) c ) <-> x < c ) ) |
45 |
44
|
biimpar |
|- ( ( ( x e. RR /\ c e. RR ) /\ x < c ) -> x e. ( x [,) c ) ) |
46 |
45
|
adantr |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> x e. ( x [,) c ) ) |
47 |
|
eleq2 |
|- ( i = ( x [,) c ) -> ( x e. i <-> x e. ( x [,) c ) ) ) |
48 |
47
|
adantl |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> ( x e. i <-> x e. ( x [,) c ) ) ) |
49 |
46 48
|
mpbird |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> x e. i ) |
50 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
51 |
|
opelxpi |
|- ( ( x e. RR /\ c e. RR ) -> <. x , c >. e. ( RR X. RR ) ) |
52 |
50 51
|
sseldi |
|- ( ( x e. RR /\ c e. RR ) -> <. x , c >. e. ( RR* X. RR* ) ) |
53 |
|
df-ico |
|- [,) = ( x e. RR* , c e. RR* |-> { z e. RR* | ( x <_ z /\ z < c ) } ) |
54 |
53
|
ixxf |
|- [,) : ( RR* X. RR* ) --> ~P RR* |
55 |
54
|
fdmi |
|- dom [,) = ( RR* X. RR* ) |
56 |
55
|
eleq2i |
|- ( <. x , c >. e. dom [,) <-> <. x , c >. e. ( RR* X. RR* ) ) |
57 |
53
|
mpofun |
|- Fun [,) |
58 |
|
funfvima |
|- ( ( Fun [,) /\ <. x , c >. e. dom [,) ) -> ( <. x , c >. e. ( RR X. RR ) -> ( [,) ` <. x , c >. ) e. ( [,) " ( RR X. RR ) ) ) ) |
59 |
57 58
|
mpan |
|- ( <. x , c >. e. dom [,) -> ( <. x , c >. e. ( RR X. RR ) -> ( [,) ` <. x , c >. ) e. ( [,) " ( RR X. RR ) ) ) ) |
60 |
56 59
|
sylbir |
|- ( <. x , c >. e. ( RR* X. RR* ) -> ( <. x , c >. e. ( RR X. RR ) -> ( [,) ` <. x , c >. ) e. ( [,) " ( RR X. RR ) ) ) ) |
61 |
52 51 60
|
sylc |
|- ( ( x e. RR /\ c e. RR ) -> ( [,) ` <. x , c >. ) e. ( [,) " ( RR X. RR ) ) ) |
62 |
|
df-ov |
|- ( x [,) c ) = ( [,) ` <. x , c >. ) |
63 |
61 62 1
|
3eltr4g |
|- ( ( x e. RR /\ c e. RR ) -> ( x [,) c ) e. I ) |
64 |
|
eleq1 |
|- ( i = ( x [,) c ) -> ( i e. I <-> ( x [,) c ) e. I ) ) |
65 |
63 64
|
syl5ibrcom |
|- ( ( x e. RR /\ c e. RR ) -> ( i = ( x [,) c ) -> i e. I ) ) |
66 |
65
|
imp |
|- ( ( ( x e. RR /\ c e. RR ) /\ i = ( x [,) c ) ) -> i e. I ) |
67 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
68 |
|
ffn |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
69 |
67 68
|
ax-mp |
|- (,) Fn ( RR* X. RR* ) |
70 |
|
ovelrn |
|- ( (,) Fn ( RR* X. RR* ) -> ( o e. ran (,) <-> E. a e. RR* E. b e. RR* o = ( a (,) b ) ) ) |
71 |
69 70
|
ax-mp |
|- ( o e. ran (,) <-> E. a e. RR* E. b e. RR* o = ( a (,) b ) ) |
72 |
|
iooelexlt |
|- ( x e. ( a (,) b ) -> E. y e. ( a (,) b ) y < x ) |
73 |
|
df-rex |
|- ( E. y e. ( a (,) b ) y < x <-> E. y ( y e. ( a (,) b ) /\ y < x ) ) |
74 |
72 73
|
sylib |
|- ( x e. ( a (,) b ) -> E. y ( y e. ( a (,) b ) /\ y < x ) ) |
75 |
|
simpl |
|- ( ( y e. ( a (,) b ) /\ y < x ) -> y e. ( a (,) b ) ) |
76 |
75
|
a1i |
|- ( x e. ( a (,) b ) -> ( ( y e. ( a (,) b ) /\ y < x ) -> y e. ( a (,) b ) ) ) |
77 |
53
|
elmpocl2 |
|- ( y e. ( x [,) c ) -> c e. RR* ) |
78 |
|
elioore |
|- ( x e. ( a (,) b ) -> x e. RR ) |
79 |
|
elico2 |
|- ( ( x e. RR /\ c e. RR* ) -> ( y e. ( x [,) c ) <-> ( y e. RR /\ x <_ y /\ y < c ) ) ) |
80 |
78 79
|
sylan |
|- ( ( x e. ( a (,) b ) /\ c e. RR* ) -> ( y e. ( x [,) c ) <-> ( y e. RR /\ x <_ y /\ y < c ) ) ) |
81 |
|
simp2 |
|- ( ( y e. RR /\ x <_ y /\ y < c ) -> x <_ y ) |
82 |
80 81
|
syl6bi |
|- ( ( x e. ( a (,) b ) /\ c e. RR* ) -> ( y e. ( x [,) c ) -> x <_ y ) ) |
83 |
82
|
ex |
|- ( x e. ( a (,) b ) -> ( c e. RR* -> ( y e. ( x [,) c ) -> x <_ y ) ) ) |
84 |
83
|
com23 |
|- ( x e. ( a (,) b ) -> ( y e. ( x [,) c ) -> ( c e. RR* -> x <_ y ) ) ) |
85 |
77 84
|
mpdi |
|- ( x e. ( a (,) b ) -> ( y e. ( x [,) c ) -> x <_ y ) ) |
86 |
85
|
imp |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> x <_ y ) |
87 |
78
|
rexrd |
|- ( x e. ( a (,) b ) -> x e. RR* ) |
88 |
87
|
adantr |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> x e. RR* ) |
89 |
|
elicore |
|- ( ( x e. RR /\ y e. ( x [,) c ) ) -> y e. RR ) |
90 |
78 89
|
sylan |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> y e. RR ) |
91 |
90
|
rexrd |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> y e. RR* ) |
92 |
|
xrlenlt |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x <_ y <-> -. y < x ) ) |
93 |
92
|
biimpd |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x <_ y -> -. y < x ) ) |
94 |
93
|
con2d |
|- ( ( x e. RR* /\ y e. RR* ) -> ( y < x -> -. x <_ y ) ) |
95 |
88 91 94
|
syl2anc |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> ( y < x -> -. x <_ y ) ) |
96 |
86 95
|
mt2d |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> -. y < x ) |
97 |
96
|
intnand |
|- ( ( x e. ( a (,) b ) /\ y e. ( x [,) c ) ) -> -. ( y e. ( a (,) b ) /\ y < x ) ) |
98 |
97
|
ex |
|- ( x e. ( a (,) b ) -> ( y e. ( x [,) c ) -> -. ( y e. ( a (,) b ) /\ y < x ) ) ) |
99 |
98
|
con2d |
|- ( x e. ( a (,) b ) -> ( ( y e. ( a (,) b ) /\ y < x ) -> -. y e. ( x [,) c ) ) ) |
100 |
76 99
|
jcad |
|- ( x e. ( a (,) b ) -> ( ( y e. ( a (,) b ) /\ y < x ) -> ( y e. ( a (,) b ) /\ -. y e. ( x [,) c ) ) ) ) |
101 |
|
annim |
|- ( ( y e. ( a (,) b ) /\ -. y e. ( x [,) c ) ) <-> -. ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) |
102 |
100 101
|
syl6ib |
|- ( x e. ( a (,) b ) -> ( ( y e. ( a (,) b ) /\ y < x ) -> -. ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) ) |
103 |
102
|
eximdv |
|- ( x e. ( a (,) b ) -> ( E. y ( y e. ( a (,) b ) /\ y < x ) -> E. y -. ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) ) |
104 |
74 103
|
mpd |
|- ( x e. ( a (,) b ) -> E. y -. ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) |
105 |
|
exnal |
|- ( E. y -. ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) <-> -. A. y ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) |
106 |
104 105
|
sylib |
|- ( x e. ( a (,) b ) -> -. A. y ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) |
107 |
|
dfss2 |
|- ( ( a (,) b ) C_ ( x [,) c ) <-> A. y ( y e. ( a (,) b ) -> y e. ( x [,) c ) ) ) |
108 |
106 107
|
sylnibr |
|- ( x e. ( a (,) b ) -> -. ( a (,) b ) C_ ( x [,) c ) ) |
109 |
|
imnan |
|- ( ( x e. ( a (,) b ) -> -. ( a (,) b ) C_ ( x [,) c ) ) <-> -. ( x e. ( a (,) b ) /\ ( a (,) b ) C_ ( x [,) c ) ) ) |
110 |
108 109
|
mpbi |
|- -. ( x e. ( a (,) b ) /\ ( a (,) b ) C_ ( x [,) c ) ) |
111 |
|
eleq2 |
|- ( o = ( a (,) b ) -> ( x e. o <-> x e. ( a (,) b ) ) ) |
112 |
|
sseq1 |
|- ( o = ( a (,) b ) -> ( o C_ ( x [,) c ) <-> ( a (,) b ) C_ ( x [,) c ) ) ) |
113 |
111 112
|
anbi12d |
|- ( o = ( a (,) b ) -> ( ( x e. o /\ o C_ ( x [,) c ) ) <-> ( x e. ( a (,) b ) /\ ( a (,) b ) C_ ( x [,) c ) ) ) ) |
114 |
110 113
|
mtbiri |
|- ( o = ( a (,) b ) -> -. ( x e. o /\ o C_ ( x [,) c ) ) ) |
115 |
|
sseq2 |
|- ( i = ( x [,) c ) -> ( o C_ i <-> o C_ ( x [,) c ) ) ) |
116 |
115
|
anbi2d |
|- ( i = ( x [,) c ) -> ( ( x e. o /\ o C_ i ) <-> ( x e. o /\ o C_ ( x [,) c ) ) ) ) |
117 |
116
|
notbid |
|- ( i = ( x [,) c ) -> ( -. ( x e. o /\ o C_ i ) <-> -. ( x e. o /\ o C_ ( x [,) c ) ) ) ) |
118 |
114 117
|
syl5ibrcom |
|- ( o = ( a (,) b ) -> ( i = ( x [,) c ) -> -. ( x e. o /\ o C_ i ) ) ) |
119 |
118
|
a1i |
|- ( ( a e. RR* /\ b e. RR* ) -> ( o = ( a (,) b ) -> ( i = ( x [,) c ) -> -. ( x e. o /\ o C_ i ) ) ) ) |
120 |
119
|
rexlimivv |
|- ( E. a e. RR* E. b e. RR* o = ( a (,) b ) -> ( i = ( x [,) c ) -> -. ( x e. o /\ o C_ i ) ) ) |
121 |
71 120
|
sylbi |
|- ( o e. ran (,) -> ( i = ( x [,) c ) -> -. ( x e. o /\ o C_ i ) ) ) |
122 |
121
|
com12 |
|- ( i = ( x [,) c ) -> ( o e. ran (,) -> -. ( x e. o /\ o C_ i ) ) ) |
123 |
122
|
ralrimiv |
|- ( i = ( x [,) c ) -> A. o e. ran (,) -. ( x e. o /\ o C_ i ) ) |
124 |
|
ralnex |
|- ( A. o e. ran (,) -. ( x e. o /\ o C_ i ) <-> -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) |
125 |
123 124
|
sylib |
|- ( i = ( x [,) c ) -> -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) |
126 |
125
|
adantl |
|- ( ( ( x e. RR /\ c e. RR ) /\ i = ( x [,) c ) ) -> -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) |
127 |
66 126
|
jca |
|- ( ( ( x e. RR /\ c e. RR ) /\ i = ( x [,) c ) ) -> ( i e. I /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
128 |
127
|
adantlr |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> ( i e. I /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
129 |
49 128
|
jca |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> ( x e. i /\ ( i e. I /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) |
130 |
|
an12 |
|- ( ( x e. i /\ ( i e. I /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) <-> ( i e. I /\ ( x e. i /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) |
131 |
|
annim |
|- ( ( x e. i /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) <-> -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
132 |
131
|
anbi2i |
|- ( ( i e. I /\ ( x e. i /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) <-> ( i e. I /\ -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) |
133 |
130 132
|
bitri |
|- ( ( x e. i /\ ( i e. I /\ -. E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) <-> ( i e. I /\ -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) |
134 |
129 133
|
sylib |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> ( i e. I /\ -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) |
135 |
|
rspe |
|- ( ( i e. I /\ -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) -> E. i e. I -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
136 |
134 135
|
syl |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> E. i e. I -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
137 |
|
rexnal |
|- ( E. i e. I -. ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) <-> -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
138 |
136 137
|
sylib |
|- ( ( ( ( x e. RR /\ c e. RR ) /\ x < c ) /\ i = ( x [,) c ) ) -> -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
139 |
138
|
exp41 |
|- ( x e. RR -> ( c e. RR -> ( x < c -> ( i = ( x [,) c ) -> -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) ) ) |
140 |
139
|
com4l |
|- ( c e. RR -> ( x < c -> ( i = ( x [,) c ) -> ( x e. RR -> -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) ) ) |
141 |
140
|
imp41 |
|- ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
142 |
|
rspe |
|- ( ( x e. RR /\ -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) -> E. x e. RR -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
143 |
34 141 142
|
syl2anc |
|- ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> E. x e. RR -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
144 |
|
rexnal |
|- ( E. x e. RR -. A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) <-> -. A. x e. RR A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
145 |
143 144
|
sylib |
|- ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. A. x e. RR A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
146 |
|
df-ico |
|- [,) = ( m e. RR* , n e. RR* |-> { z e. RR* | ( m <_ z /\ z < n ) } ) |
147 |
146
|
ixxex |
|- [,) e. _V |
148 |
|
imaexg |
|- ( [,) e. _V -> ( [,) " ( RR X. RR ) ) e. _V ) |
149 |
147 148
|
ax-mp |
|- ( [,) " ( RR X. RR ) ) e. _V |
150 |
1 149
|
eqeltri |
|- I e. _V |
151 |
1
|
icoreunrn |
|- RR = U. I |
152 |
|
unirnioo |
|- RR = U. ran (,) |
153 |
151 152
|
eqtr3i |
|- U. I = U. ran (,) |
154 |
|
tgss2 |
|- ( ( I e. _V /\ U. I = U. ran (,) ) -> ( ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> A. x e. U. I A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) ) |
155 |
150 153 154
|
mp2an |
|- ( ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> A. x e. U. I A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
156 |
151
|
raleqi |
|- ( A. x e. RR A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) <-> A. x e. U. I A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
157 |
155 156
|
bitr4i |
|- ( ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> A. x e. RR A. i e. I ( x e. i -> E. o e. ran (,) ( x e. o /\ o C_ i ) ) ) |
158 |
145 157
|
sylnibr |
|- ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
159 |
158
|
sbcth |
|- ( 1 e. RR -> [. 1 / x ]. ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
160 |
7 159
|
ax-mp |
|- [. 1 / x ]. ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
161 |
|
sbcimg |
|- ( 1 e. RR -> ( [. 1 / x ]. ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) <-> ( [. 1 / x ]. ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> [. 1 / x ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) ) |
162 |
7 161
|
ax-mp |
|- ( [. 1 / x ]. ( ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) <-> ( [. 1 / x ]. ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> [. 1 / x ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
163 |
160 162
|
mpbi |
|- ( [. 1 / x ]. ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) -> [. 1 / x ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
164 |
|
sbcel1v |
|- ( [. 1 / x ]. x e. RR <-> 1 e. RR ) |
165 |
7 164
|
mpbir |
|- [. 1 / x ]. x e. RR |
166 |
|
sbcan |
|- ( [. 1 / x ]. ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) <-> ( [. 1 / x ]. ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ [. 1 / x ]. x e. RR ) ) |
167 |
165 166
|
mpbiran2 |
|- ( [. 1 / x ]. ( ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) /\ x e. RR ) <-> [. 1 / x ]. ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) ) |
168 |
|
sbcg |
|- ( 1 e. RR -> ( [. 1 / x ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
169 |
7 168
|
ax-mp |
|- ( [. 1 / x ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
170 |
163 167 169
|
3imtr3i |
|- ( [. 1 / x ]. ( ( c e. RR /\ x < c ) /\ i = ( x [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
171 |
33 170
|
sylbir |
|- ( ( [. 1 / x ]. ( c e. RR /\ x < c ) /\ [. 1 / x ]. i = ( x [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
172 |
21 32 171
|
syl2anbr |
|- ( ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
173 |
172
|
sbcth |
|- ( ( 1 [,) c ) e. _V -> [. ( 1 [,) c ) / i ]. ( ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
174 |
5 173
|
ax-mp |
|- [. ( 1 [,) c ) / i ]. ( ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
175 |
|
sbcimg |
|- ( ( 1 [,) c ) e. _V -> ( [. ( 1 [,) c ) / i ]. ( ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) <-> ( [. ( 1 [,) c ) / i ]. ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> [. ( 1 [,) c ) / i ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) ) |
176 |
5 175
|
ax-mp |
|- ( [. ( 1 [,) c ) / i ]. ( ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) <-> ( [. ( 1 [,) c ) / i ]. ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> [. ( 1 [,) c ) / i ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
177 |
174 176
|
mpbi |
|- ( [. ( 1 [,) c ) / i ]. ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) -> [. ( 1 [,) c ) / i ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
178 |
|
sbcan |
|- ( [. ( 1 [,) c ) / i ]. ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) <-> ( [. ( 1 [,) c ) / i ]. ( c e. RR /\ 1 < c ) /\ [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) ) ) |
179 |
|
eqid |
|- ( 1 [,) c ) = ( 1 [,) c ) |
180 |
|
eqsbc3 |
|- ( ( 1 [,) c ) e. _V -> ( [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) <-> ( 1 [,) c ) = ( 1 [,) c ) ) ) |
181 |
5 180
|
ax-mp |
|- ( [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) <-> ( 1 [,) c ) = ( 1 [,) c ) ) |
182 |
179 181
|
mpbir |
|- [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) |
183 |
|
sbcg |
|- ( ( 1 [,) c ) e. _V -> ( [. ( 1 [,) c ) / i ]. ( c e. RR /\ 1 < c ) <-> ( c e. RR /\ 1 < c ) ) ) |
184 |
5 183
|
ax-mp |
|- ( [. ( 1 [,) c ) / i ]. ( c e. RR /\ 1 < c ) <-> ( c e. RR /\ 1 < c ) ) |
185 |
184
|
anbi1i |
|- ( ( [. ( 1 [,) c ) / i ]. ( c e. RR /\ 1 < c ) /\ [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) ) <-> ( ( c e. RR /\ 1 < c ) /\ [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) ) ) |
186 |
182 185
|
mpbiran2 |
|- ( ( [. ( 1 [,) c ) / i ]. ( c e. RR /\ 1 < c ) /\ [. ( 1 [,) c ) / i ]. i = ( 1 [,) c ) ) <-> ( c e. RR /\ 1 < c ) ) |
187 |
178 186
|
bitri |
|- ( [. ( 1 [,) c ) / i ]. ( ( c e. RR /\ 1 < c ) /\ i = ( 1 [,) c ) ) <-> ( c e. RR /\ 1 < c ) ) |
188 |
|
sbcg |
|- ( ( 1 [,) c ) e. _V -> ( [. ( 1 [,) c ) / i ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
189 |
5 188
|
ax-mp |
|- ( [. ( 1 [,) c ) / i ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
190 |
177 187 189
|
3imtr3i |
|- ( ( c e. RR /\ 1 < c ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
191 |
190
|
sbcth |
|- ( 2 e. RR -> [. 2 / c ]. ( ( c e. RR /\ 1 < c ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
192 |
3 191
|
ax-mp |
|- [. 2 / c ]. ( ( c e. RR /\ 1 < c ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
193 |
|
sbcimg |
|- ( 2 e. RR -> ( [. 2 / c ]. ( ( c e. RR /\ 1 < c ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) <-> ( [. 2 / c ]. ( c e. RR /\ 1 < c ) -> [. 2 / c ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) ) |
194 |
3 193
|
ax-mp |
|- ( [. 2 / c ]. ( ( c e. RR /\ 1 < c ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) <-> ( [. 2 / c ]. ( c e. RR /\ 1 < c ) -> [. 2 / c ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
195 |
192 194
|
mpbi |
|- ( [. 2 / c ]. ( c e. RR /\ 1 < c ) -> [. 2 / c ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
196 |
|
sbcan |
|- ( [. 2 / c ]. ( c e. RR /\ 1 < c ) <-> ( [. 2 / c ]. c e. RR /\ [. 2 / c ]. 1 < c ) ) |
197 |
|
sbcel1v |
|- ( [. 2 / c ]. c e. RR <-> 2 e. RR ) |
198 |
|
sbcbr123 |
|- ( [. 2 / c ]. 1 < c <-> [_ 2 / c ]_ 1 [_ 2 / c ]_ < [_ 2 / c ]_ c ) |
199 |
|
csbconstg |
|- ( 2 e. RR -> [_ 2 / c ]_ 1 = 1 ) |
200 |
3 199
|
ax-mp |
|- [_ 2 / c ]_ 1 = 1 |
201 |
|
csbvarg |
|- ( 2 e. RR -> [_ 2 / c ]_ c = 2 ) |
202 |
3 201
|
ax-mp |
|- [_ 2 / c ]_ c = 2 |
203 |
200 202
|
breq12i |
|- ( [_ 2 / c ]_ 1 [_ 2 / c ]_ < [_ 2 / c ]_ c <-> 1 [_ 2 / c ]_ < 2 ) |
204 |
|
csbconstg |
|- ( 2 e. RR -> [_ 2 / c ]_ < = < ) |
205 |
3 204
|
ax-mp |
|- [_ 2 / c ]_ < = < |
206 |
205
|
breqi |
|- ( 1 [_ 2 / c ]_ < 2 <-> 1 < 2 ) |
207 |
198 203 206
|
3bitri |
|- ( [. 2 / c ]. 1 < c <-> 1 < 2 ) |
208 |
197 207
|
anbi12i |
|- ( ( [. 2 / c ]. c e. RR /\ [. 2 / c ]. 1 < c ) <-> ( 2 e. RR /\ 1 < 2 ) ) |
209 |
196 208
|
bitri |
|- ( [. 2 / c ]. ( c e. RR /\ 1 < c ) <-> ( 2 e. RR /\ 1 < 2 ) ) |
210 |
|
sbcg |
|- ( 2 e. RR -> ( [. 2 / c ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) ) |
211 |
3 210
|
ax-mp |
|- ( [. 2 / c ]. -. ( topGen ` I ) C_ ( topGen ` ran (,) ) <-> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
212 |
195 209 211
|
3imtr3i |
|- ( ( 2 e. RR /\ 1 < 2 ) -> -. ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
213 |
3 4 212
|
mp2an |
|- -. ( topGen ` I ) C_ ( topGen ` ran (,) ) |
214 |
|
eqimss |
|- ( ( topGen ` I ) = ( topGen ` ran (,) ) -> ( topGen ` I ) C_ ( topGen ` ran (,) ) ) |
215 |
213 214
|
mto |
|- -. ( topGen ` I ) = ( topGen ` ran (,) ) |
216 |
215
|
nesymir |
|- ( topGen ` ran (,) ) =/= ( topGen ` I ) |
217 |
|
df-pss |
|- ( ( topGen ` ran (,) ) C. ( topGen ` I ) <-> ( ( topGen ` ran (,) ) C_ ( topGen ` I ) /\ ( topGen ` ran (,) ) =/= ( topGen ` I ) ) ) |
218 |
2 216 217
|
mpbir2an |
|- ( topGen ` ran (,) ) C. ( topGen ` I ) |