| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relowlpssretop.1 |
⊢ 𝐼 = ( [,) “ ( ℝ × ℝ ) ) |
| 2 |
1
|
relowlssretop |
⊢ ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ 𝐼 ) |
| 3 |
|
2re |
⊢ 2 ∈ ℝ |
| 4 |
|
1lt2 |
⊢ 1 < 2 |
| 5 |
|
ovex |
⊢ ( 1 [,) 𝑐 ) ∈ V |
| 6 |
|
sbcan |
⊢ ( [ 1 / 𝑥 ] ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ↔ ( [ 1 / 𝑥 ] 𝑐 ∈ ℝ ∧ [ 1 / 𝑥 ] 𝑥 < 𝑐 ) ) |
| 7 |
|
1re |
⊢ 1 ∈ ℝ |
| 8 |
|
sbcg |
⊢ ( 1 ∈ ℝ → ( [ 1 / 𝑥 ] 𝑐 ∈ ℝ ↔ 𝑐 ∈ ℝ ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( [ 1 / 𝑥 ] 𝑐 ∈ ℝ ↔ 𝑐 ∈ ℝ ) |
| 10 |
|
sbcbr123 |
⊢ ( [ 1 / 𝑥 ] 𝑥 < 𝑐 ↔ ⦋ 1 / 𝑥 ⦌ 𝑥 ⦋ 1 / 𝑥 ⦌ < ⦋ 1 / 𝑥 ⦌ 𝑐 ) |
| 11 |
|
csbvarg |
⊢ ( 1 ∈ ℝ → ⦋ 1 / 𝑥 ⦌ 𝑥 = 1 ) |
| 12 |
7 11
|
ax-mp |
⊢ ⦋ 1 / 𝑥 ⦌ 𝑥 = 1 |
| 13 |
|
csbconstg |
⊢ ( 1 ∈ ℝ → ⦋ 1 / 𝑥 ⦌ 𝑐 = 𝑐 ) |
| 14 |
7 13
|
ax-mp |
⊢ ⦋ 1 / 𝑥 ⦌ 𝑐 = 𝑐 |
| 15 |
12 14
|
breq12i |
⊢ ( ⦋ 1 / 𝑥 ⦌ 𝑥 ⦋ 1 / 𝑥 ⦌ < ⦋ 1 / 𝑥 ⦌ 𝑐 ↔ 1 ⦋ 1 / 𝑥 ⦌ < 𝑐 ) |
| 16 |
|
csbconstg |
⊢ ( 1 ∈ ℝ → ⦋ 1 / 𝑥 ⦌ < = < ) |
| 17 |
7 16
|
ax-mp |
⊢ ⦋ 1 / 𝑥 ⦌ < = < |
| 18 |
17
|
breqi |
⊢ ( 1 ⦋ 1 / 𝑥 ⦌ < 𝑐 ↔ 1 < 𝑐 ) |
| 19 |
10 15 18
|
3bitri |
⊢ ( [ 1 / 𝑥 ] 𝑥 < 𝑐 ↔ 1 < 𝑐 ) |
| 20 |
9 19
|
anbi12i |
⊢ ( ( [ 1 / 𝑥 ] 𝑐 ∈ ℝ ∧ [ 1 / 𝑥 ] 𝑥 < 𝑐 ) ↔ ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ) |
| 21 |
6 20
|
bitri |
⊢ ( [ 1 / 𝑥 ] ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ↔ ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ) |
| 22 |
|
sbceqg |
⊢ ( 1 ∈ ℝ → ( [ 1 / 𝑥 ] 𝑖 = ( 𝑥 [,) 𝑐 ) ↔ ⦋ 1 / 𝑥 ⦌ 𝑖 = ⦋ 1 / 𝑥 ⦌ ( 𝑥 [,) 𝑐 ) ) ) |
| 23 |
7 22
|
ax-mp |
⊢ ( [ 1 / 𝑥 ] 𝑖 = ( 𝑥 [,) 𝑐 ) ↔ ⦋ 1 / 𝑥 ⦌ 𝑖 = ⦋ 1 / 𝑥 ⦌ ( 𝑥 [,) 𝑐 ) ) |
| 24 |
|
csbconstg |
⊢ ( 1 ∈ ℝ → ⦋ 1 / 𝑥 ⦌ 𝑖 = 𝑖 ) |
| 25 |
7 24
|
ax-mp |
⊢ ⦋ 1 / 𝑥 ⦌ 𝑖 = 𝑖 |
| 26 |
|
csbov123 |
⊢ ⦋ 1 / 𝑥 ⦌ ( 𝑥 [,) 𝑐 ) = ( ⦋ 1 / 𝑥 ⦌ 𝑥 ⦋ 1 / 𝑥 ⦌ [,) ⦋ 1 / 𝑥 ⦌ 𝑐 ) |
| 27 |
|
csbconstg |
⊢ ( 1 ∈ ℝ → ⦋ 1 / 𝑥 ⦌ [,) = [,) ) |
| 28 |
7 27
|
ax-mp |
⊢ ⦋ 1 / 𝑥 ⦌ [,) = [,) |
| 29 |
12 14 28
|
oveq123i |
⊢ ( ⦋ 1 / 𝑥 ⦌ 𝑥 ⦋ 1 / 𝑥 ⦌ [,) ⦋ 1 / 𝑥 ⦌ 𝑐 ) = ( 1 [,) 𝑐 ) |
| 30 |
26 29
|
eqtri |
⊢ ⦋ 1 / 𝑥 ⦌ ( 𝑥 [,) 𝑐 ) = ( 1 [,) 𝑐 ) |
| 31 |
25 30
|
eqeq12i |
⊢ ( ⦋ 1 / 𝑥 ⦌ 𝑖 = ⦋ 1 / 𝑥 ⦌ ( 𝑥 [,) 𝑐 ) ↔ 𝑖 = ( 1 [,) 𝑐 ) ) |
| 32 |
23 31
|
bitri |
⊢ ( [ 1 / 𝑥 ] 𝑖 = ( 𝑥 [,) 𝑐 ) ↔ 𝑖 = ( 1 [,) 𝑐 ) ) |
| 33 |
|
sbcan |
⊢ ( [ 1 / 𝑥 ] ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ↔ ( [ 1 / 𝑥 ] ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ [ 1 / 𝑥 ] 𝑖 = ( 𝑥 [,) 𝑐 ) ) ) |
| 34 |
|
simpr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 35 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 𝑥 ∈ ℝ ) |
| 36 |
|
leid |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ 𝑥 ) |
| 37 |
35 36
|
jccir |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ) ) |
| 38 |
|
rexr |
⊢ ( 𝑐 ∈ ℝ → 𝑐 ∈ ℝ* ) |
| 39 |
|
elico2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ* ) → ( 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ∧ 𝑥 < 𝑐 ) ) ) |
| 40 |
38 39
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ∧ 𝑥 < 𝑐 ) ) ) |
| 41 |
|
df-3an |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ∧ 𝑥 < 𝑐 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ) ∧ 𝑥 < 𝑐 ) ) |
| 42 |
40 41
|
bitrdi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ) ∧ 𝑥 < 𝑐 ) ) ) |
| 43 |
42
|
baibd |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑥 ≤ 𝑥 ) ) → ( 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ↔ 𝑥 < 𝑐 ) ) |
| 44 |
37 43
|
mpdan |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ↔ 𝑥 < 𝑐 ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) → 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ) |
| 47 |
|
eleq2 |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( 𝑥 ∈ 𝑖 ↔ 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 48 |
47
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ( 𝑥 ∈ 𝑖 ↔ 𝑥 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 49 |
46 48
|
mpbird |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → 𝑥 ∈ 𝑖 ) |
| 50 |
|
rexpssxrxp |
⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) |
| 51 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 〈 𝑥 , 𝑐 〉 ∈ ( ℝ × ℝ ) ) |
| 52 |
50 51
|
sselid |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → 〈 𝑥 , 𝑐 〉 ∈ ( ℝ* × ℝ* ) ) |
| 53 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑐 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑐 ) } ) |
| 54 |
53
|
ixxf |
⊢ [,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ* |
| 55 |
54
|
fdmi |
⊢ dom [,) = ( ℝ* × ℝ* ) |
| 56 |
55
|
eleq2i |
⊢ ( 〈 𝑥 , 𝑐 〉 ∈ dom [,) ↔ 〈 𝑥 , 𝑐 〉 ∈ ( ℝ* × ℝ* ) ) |
| 57 |
53
|
mpofun |
⊢ Fun [,) |
| 58 |
|
funfvima |
⊢ ( ( Fun [,) ∧ 〈 𝑥 , 𝑐 〉 ∈ dom [,) ) → ( 〈 𝑥 , 𝑐 〉 ∈ ( ℝ × ℝ ) → ( [,) ‘ 〈 𝑥 , 𝑐 〉 ) ∈ ( [,) “ ( ℝ × ℝ ) ) ) ) |
| 59 |
57 58
|
mpan |
⊢ ( 〈 𝑥 , 𝑐 〉 ∈ dom [,) → ( 〈 𝑥 , 𝑐 〉 ∈ ( ℝ × ℝ ) → ( [,) ‘ 〈 𝑥 , 𝑐 〉 ) ∈ ( [,) “ ( ℝ × ℝ ) ) ) ) |
| 60 |
56 59
|
sylbir |
⊢ ( 〈 𝑥 , 𝑐 〉 ∈ ( ℝ* × ℝ* ) → ( 〈 𝑥 , 𝑐 〉 ∈ ( ℝ × ℝ ) → ( [,) ‘ 〈 𝑥 , 𝑐 〉 ) ∈ ( [,) “ ( ℝ × ℝ ) ) ) ) |
| 61 |
52 51 60
|
sylc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( [,) ‘ 〈 𝑥 , 𝑐 〉 ) ∈ ( [,) “ ( ℝ × ℝ ) ) ) |
| 62 |
|
df-ov |
⊢ ( 𝑥 [,) 𝑐 ) = ( [,) ‘ 〈 𝑥 , 𝑐 〉 ) |
| 63 |
61 62 1
|
3eltr4g |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑥 [,) 𝑐 ) ∈ 𝐼 ) |
| 64 |
|
eleq1 |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( 𝑖 ∈ 𝐼 ↔ ( 𝑥 [,) 𝑐 ) ∈ 𝐼 ) ) |
| 65 |
63 64
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → 𝑖 ∈ 𝐼 ) ) |
| 66 |
65
|
imp |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → 𝑖 ∈ 𝐼 ) |
| 67 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
| 68 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
| 69 |
67 68
|
ax-mp |
⊢ (,) Fn ( ℝ* × ℝ* ) |
| 70 |
|
ovelrn |
⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑜 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑜 = ( 𝑎 (,) 𝑏 ) ) ) |
| 71 |
69 70
|
ax-mp |
⊢ ( 𝑜 ∈ ran (,) ↔ ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑜 = ( 𝑎 (,) 𝑏 ) ) |
| 72 |
|
iooelexlt |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ∃ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) 𝑦 < 𝑥 ) |
| 73 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝑎 (,) 𝑏 ) 𝑦 < 𝑥 ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) ) |
| 74 |
72 73
|
sylib |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) ) |
| 75 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) → 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) |
| 76 |
75
|
a1i |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) → 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ) ) |
| 77 |
53
|
elmpocl2 |
⊢ ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) → 𝑐 ∈ ℝ* ) |
| 78 |
|
elioore |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → 𝑥 ∈ ℝ ) |
| 79 |
|
elico2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ∧ 𝑦 < 𝑐 ) ) ) |
| 80 |
78 79
|
sylan |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑐 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ↔ ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ∧ 𝑦 < 𝑐 ) ) ) |
| 81 |
|
simp2 |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ∧ 𝑦 < 𝑐 ) → 𝑥 ≤ 𝑦 ) |
| 82 |
80 81
|
biimtrdi |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑐 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) → 𝑥 ≤ 𝑦 ) ) |
| 83 |
82
|
ex |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( 𝑐 ∈ ℝ* → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) → 𝑥 ≤ 𝑦 ) ) ) |
| 84 |
83
|
com23 |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) → ( 𝑐 ∈ ℝ* → 𝑥 ≤ 𝑦 ) ) ) |
| 85 |
77 84
|
mpdi |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) → 𝑥 ≤ 𝑦 ) ) |
| 86 |
85
|
imp |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → 𝑥 ≤ 𝑦 ) |
| 87 |
78
|
rexrd |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → 𝑥 ∈ ℝ* ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → 𝑥 ∈ ℝ* ) |
| 89 |
|
elicore |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → 𝑦 ∈ ℝ ) |
| 90 |
78 89
|
sylan |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → 𝑦 ∈ ℝ ) |
| 91 |
90
|
rexrd |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → 𝑦 ∈ ℝ* ) |
| 92 |
|
xrlenlt |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
| 93 |
92
|
biimpd |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ≤ 𝑦 → ¬ 𝑦 < 𝑥 ) ) |
| 94 |
93
|
con2d |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 → ¬ 𝑥 ≤ 𝑦 ) ) |
| 95 |
88 91 94
|
syl2anc |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → ( 𝑦 < 𝑥 → ¬ 𝑥 ≤ 𝑦 ) ) |
| 96 |
86 95
|
mt2d |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → ¬ 𝑦 < 𝑥 ) |
| 97 |
96
|
intnand |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) → ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) ) |
| 98 |
97
|
ex |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( 𝑦 ∈ ( 𝑥 [,) 𝑐 ) → ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 99 |
98
|
con2d |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) → ¬ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 100 |
76 99
|
jcad |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) → ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ ¬ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) ) |
| 101 |
|
annim |
⊢ ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ ¬ 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ↔ ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 102 |
100 101
|
imbitrdi |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) → ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) ) |
| 103 |
102
|
eximdv |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) ∧ 𝑦 < 𝑥 ) → ∃ 𝑦 ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) ) |
| 104 |
74 103
|
mpd |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ∃ 𝑦 ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 105 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 106 |
104 105
|
sylib |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ¬ ∀ 𝑦 ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 107 |
|
df-ss |
⊢ ( ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ↔ ∀ 𝑦 ( 𝑦 ∈ ( 𝑎 (,) 𝑏 ) → 𝑦 ∈ ( 𝑥 [,) 𝑐 ) ) ) |
| 108 |
106 107
|
sylnibr |
⊢ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ¬ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ) |
| 109 |
|
imnan |
⊢ ( ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) → ¬ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ) ↔ ¬ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ) ) |
| 110 |
108 109
|
mpbi |
⊢ ¬ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ) |
| 111 |
|
eleq2 |
⊢ ( 𝑜 = ( 𝑎 (,) 𝑏 ) → ( 𝑥 ∈ 𝑜 ↔ 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ) ) |
| 112 |
|
sseq1 |
⊢ ( 𝑜 = ( 𝑎 (,) 𝑏 ) → ( 𝑜 ⊆ ( 𝑥 [,) 𝑐 ) ↔ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ) ) |
| 113 |
111 112
|
anbi12d |
⊢ ( 𝑜 = ( 𝑎 (,) 𝑏 ) → ( ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( 𝑥 [,) 𝑐 ) ) ↔ ( 𝑥 ∈ ( 𝑎 (,) 𝑏 ) ∧ ( 𝑎 (,) 𝑏 ) ⊆ ( 𝑥 [,) 𝑐 ) ) ) ) |
| 114 |
110 113
|
mtbiri |
⊢ ( 𝑜 = ( 𝑎 (,) 𝑏 ) → ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( 𝑥 [,) 𝑐 ) ) ) |
| 115 |
|
sseq2 |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( 𝑜 ⊆ 𝑖 ↔ 𝑜 ⊆ ( 𝑥 [,) 𝑐 ) ) ) |
| 116 |
115
|
anbi2d |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ↔ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( 𝑥 [,) 𝑐 ) ) ) ) |
| 117 |
116
|
notbid |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ↔ ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ ( 𝑥 [,) 𝑐 ) ) ) ) |
| 118 |
114 117
|
syl5ibrcom |
⊢ ( 𝑜 = ( 𝑎 (,) 𝑏 ) → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 119 |
118
|
a1i |
⊢ ( ( 𝑎 ∈ ℝ* ∧ 𝑏 ∈ ℝ* ) → ( 𝑜 = ( 𝑎 (,) 𝑏 ) → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 120 |
119
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℝ* ∃ 𝑏 ∈ ℝ* 𝑜 = ( 𝑎 (,) 𝑏 ) → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 121 |
71 120
|
sylbi |
⊢ ( 𝑜 ∈ ran (,) → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 122 |
121
|
com12 |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( 𝑜 ∈ ran (,) → ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 123 |
122
|
ralrimiv |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ∀ 𝑜 ∈ ran (,) ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) |
| 124 |
|
ralnex |
⊢ ( ∀ 𝑜 ∈ ran (,) ¬ ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ↔ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) |
| 125 |
123 124
|
sylib |
⊢ ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) |
| 126 |
125
|
adantl |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) |
| 127 |
66 126
|
jca |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ( 𝑖 ∈ 𝐼 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 128 |
127
|
adantlr |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ( 𝑖 ∈ 𝐼 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 129 |
49 128
|
jca |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ( 𝑥 ∈ 𝑖 ∧ ( 𝑖 ∈ 𝐼 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 130 |
|
an12 |
⊢ ( ( 𝑥 ∈ 𝑖 ∧ ( 𝑖 ∈ 𝐼 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ( 𝑥 ∈ 𝑖 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 131 |
|
annim |
⊢ ( ( 𝑥 ∈ 𝑖 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ↔ ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 132 |
131
|
anbi2i |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ ( 𝑥 ∈ 𝑖 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 133 |
130 132
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑖 ∧ ( 𝑖 ∈ 𝐼 ∧ ¬ ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ↔ ( 𝑖 ∈ 𝐼 ∧ ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 134 |
129 133
|
sylib |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ( 𝑖 ∈ 𝐼 ∧ ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 135 |
|
rspe |
⊢ ( ( 𝑖 ∈ 𝐼 ∧ ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) → ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 136 |
134 135
|
syl |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 137 |
|
rexnal |
⊢ ( ∃ 𝑖 ∈ 𝐼 ¬ ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ↔ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 138 |
136 137
|
sylib |
⊢ ( ( ( ( 𝑥 ∈ ℝ ∧ 𝑐 ∈ ℝ ) ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 139 |
138
|
exp41 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑐 ∈ ℝ → ( 𝑥 < 𝑐 → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) ) ) |
| 140 |
139
|
com4l |
⊢ ( 𝑐 ∈ ℝ → ( 𝑥 < 𝑐 → ( 𝑖 = ( 𝑥 [,) 𝑐 ) → ( 𝑥 ∈ ℝ → ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) ) ) |
| 141 |
140
|
imp41 |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 142 |
|
rspe |
⊢ ( ( 𝑥 ∈ ℝ ∧ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) → ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 143 |
34 141 142
|
syl2anc |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 144 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ ℝ ¬ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ↔ ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 145 |
143 144
|
sylib |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ∀ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 146 |
|
df-ico |
⊢ [,) = ( 𝑚 ∈ ℝ* , 𝑛 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑚 ≤ 𝑧 ∧ 𝑧 < 𝑛 ) } ) |
| 147 |
146
|
ixxex |
⊢ [,) ∈ V |
| 148 |
|
imaexg |
⊢ ( [,) ∈ V → ( [,) “ ( ℝ × ℝ ) ) ∈ V ) |
| 149 |
147 148
|
ax-mp |
⊢ ( [,) “ ( ℝ × ℝ ) ) ∈ V |
| 150 |
1 149
|
eqeltri |
⊢ 𝐼 ∈ V |
| 151 |
1
|
icoreunrn |
⊢ ℝ = ∪ 𝐼 |
| 152 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
| 153 |
151 152
|
eqtr3i |
⊢ ∪ 𝐼 = ∪ ran (,) |
| 154 |
|
tgss2 |
⊢ ( ( 𝐼 ∈ V ∧ ∪ 𝐼 = ∪ ran (,) ) → ( ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ∀ 𝑥 ∈ ∪ 𝐼 ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) ) |
| 155 |
150 153 154
|
mp2an |
⊢ ( ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ∀ 𝑥 ∈ ∪ 𝐼 ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 156 |
151
|
raleqi |
⊢ ( ∀ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ↔ ∀ 𝑥 ∈ ∪ 𝐼 ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 157 |
155 156
|
bitr4i |
⊢ ( ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ∀ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑥 ∈ 𝑖 → ∃ 𝑜 ∈ ran (,) ( 𝑥 ∈ 𝑜 ∧ 𝑜 ⊆ 𝑖 ) ) ) |
| 158 |
145 157
|
sylnibr |
⊢ ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 159 |
158
|
sbcth |
⊢ ( 1 ∈ ℝ → [ 1 / 𝑥 ] ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 160 |
7 159
|
ax-mp |
⊢ [ 1 / 𝑥 ] ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 161 |
|
sbcimg |
⊢ ( 1 ∈ ℝ → ( [ 1 / 𝑥 ] ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ↔ ( [ 1 / 𝑥 ] ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → [ 1 / 𝑥 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) ) |
| 162 |
7 161
|
ax-mp |
⊢ ( [ 1 / 𝑥 ] ( ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ↔ ( [ 1 / 𝑥 ] ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → [ 1 / 𝑥 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 163 |
160 162
|
mpbi |
⊢ ( [ 1 / 𝑥 ] ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) → [ 1 / 𝑥 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 164 |
|
sbcel1v |
⊢ ( [ 1 / 𝑥 ] 𝑥 ∈ ℝ ↔ 1 ∈ ℝ ) |
| 165 |
7 164
|
mpbir |
⊢ [ 1 / 𝑥 ] 𝑥 ∈ ℝ |
| 166 |
|
sbcan |
⊢ ( [ 1 / 𝑥 ] ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) ↔ ( [ 1 / 𝑥 ] ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ [ 1 / 𝑥 ] 𝑥 ∈ ℝ ) ) |
| 167 |
165 166
|
mpbiran2 |
⊢ ( [ 1 / 𝑥 ] ( ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ∧ 𝑥 ∈ ℝ ) ↔ [ 1 / 𝑥 ] ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) ) |
| 168 |
|
sbcg |
⊢ ( 1 ∈ ℝ → ( [ 1 / 𝑥 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 169 |
7 168
|
ax-mp |
⊢ ( [ 1 / 𝑥 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 170 |
163 167 169
|
3imtr3i |
⊢ ( [ 1 / 𝑥 ] ( ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 171 |
33 170
|
sylbir |
⊢ ( ( [ 1 / 𝑥 ] ( 𝑐 ∈ ℝ ∧ 𝑥 < 𝑐 ) ∧ [ 1 / 𝑥 ] 𝑖 = ( 𝑥 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 172 |
21 32 171
|
syl2anbr |
⊢ ( ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 173 |
172
|
sbcth |
⊢ ( ( 1 [,) 𝑐 ) ∈ V → [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 174 |
5 173
|
ax-mp |
⊢ [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 175 |
|
sbcimg |
⊢ ( ( 1 [,) 𝑐 ) ∈ V → ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ↔ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → [ ( 1 [,) 𝑐 ) / 𝑖 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) ) |
| 176 |
5 175
|
ax-mp |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ↔ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → [ ( 1 [,) 𝑐 ) / 𝑖 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 177 |
174 176
|
mpbi |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) → [ ( 1 [,) 𝑐 ) / 𝑖 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 178 |
|
sbcan |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) ↔ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) ) ) |
| 179 |
|
eqid |
⊢ ( 1 [,) 𝑐 ) = ( 1 [,) 𝑐 ) |
| 180 |
|
eqsbc1 |
⊢ ( ( 1 [,) 𝑐 ) ∈ V → ( [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) ↔ ( 1 [,) 𝑐 ) = ( 1 [,) 𝑐 ) ) ) |
| 181 |
5 180
|
ax-mp |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) ↔ ( 1 [,) 𝑐 ) = ( 1 [,) 𝑐 ) ) |
| 182 |
179 181
|
mpbir |
⊢ [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) |
| 183 |
|
sbcg |
⊢ ( ( 1 [,) 𝑐 ) ∈ V → ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ↔ ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ) ) |
| 184 |
5 183
|
ax-mp |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ↔ ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ) |
| 185 |
184
|
anbi1i |
⊢ ( ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) ) ↔ ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) ) ) |
| 186 |
182 185
|
mpbiran2 |
⊢ ( ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ [ ( 1 [,) 𝑐 ) / 𝑖 ] 𝑖 = ( 1 [,) 𝑐 ) ) ↔ ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ) |
| 187 |
178 186
|
bitri |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ∧ 𝑖 = ( 1 [,) 𝑐 ) ) ↔ ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ) |
| 188 |
|
sbcg |
⊢ ( ( 1 [,) 𝑐 ) ∈ V → ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 189 |
5 188
|
ax-mp |
⊢ ( [ ( 1 [,) 𝑐 ) / 𝑖 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 190 |
177 187 189
|
3imtr3i |
⊢ ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 191 |
190
|
sbcth |
⊢ ( 2 ∈ ℝ → [ 2 / 𝑐 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 192 |
3 191
|
ax-mp |
⊢ [ 2 / 𝑐 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 193 |
|
sbcimg |
⊢ ( 2 ∈ ℝ → ( [ 2 / 𝑐 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ↔ ( [ 2 / 𝑐 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → [ 2 / 𝑐 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) ) |
| 194 |
3 193
|
ax-mp |
⊢ ( [ 2 / 𝑐 ] ( ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ↔ ( [ 2 / 𝑐 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → [ 2 / 𝑐 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 195 |
192 194
|
mpbi |
⊢ ( [ 2 / 𝑐 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) → [ 2 / 𝑐 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 196 |
|
sbcan |
⊢ ( [ 2 / 𝑐 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ↔ ( [ 2 / 𝑐 ] 𝑐 ∈ ℝ ∧ [ 2 / 𝑐 ] 1 < 𝑐 ) ) |
| 197 |
|
sbcel1v |
⊢ ( [ 2 / 𝑐 ] 𝑐 ∈ ℝ ↔ 2 ∈ ℝ ) |
| 198 |
|
sbcbr123 |
⊢ ( [ 2 / 𝑐 ] 1 < 𝑐 ↔ ⦋ 2 / 𝑐 ⦌ 1 ⦋ 2 / 𝑐 ⦌ < ⦋ 2 / 𝑐 ⦌ 𝑐 ) |
| 199 |
|
csbconstg |
⊢ ( 2 ∈ ℝ → ⦋ 2 / 𝑐 ⦌ 1 = 1 ) |
| 200 |
3 199
|
ax-mp |
⊢ ⦋ 2 / 𝑐 ⦌ 1 = 1 |
| 201 |
|
csbvarg |
⊢ ( 2 ∈ ℝ → ⦋ 2 / 𝑐 ⦌ 𝑐 = 2 ) |
| 202 |
3 201
|
ax-mp |
⊢ ⦋ 2 / 𝑐 ⦌ 𝑐 = 2 |
| 203 |
200 202
|
breq12i |
⊢ ( ⦋ 2 / 𝑐 ⦌ 1 ⦋ 2 / 𝑐 ⦌ < ⦋ 2 / 𝑐 ⦌ 𝑐 ↔ 1 ⦋ 2 / 𝑐 ⦌ < 2 ) |
| 204 |
|
csbconstg |
⊢ ( 2 ∈ ℝ → ⦋ 2 / 𝑐 ⦌ < = < ) |
| 205 |
3 204
|
ax-mp |
⊢ ⦋ 2 / 𝑐 ⦌ < = < |
| 206 |
205
|
breqi |
⊢ ( 1 ⦋ 2 / 𝑐 ⦌ < 2 ↔ 1 < 2 ) |
| 207 |
198 203 206
|
3bitri |
⊢ ( [ 2 / 𝑐 ] 1 < 𝑐 ↔ 1 < 2 ) |
| 208 |
197 207
|
anbi12i |
⊢ ( ( [ 2 / 𝑐 ] 𝑐 ∈ ℝ ∧ [ 2 / 𝑐 ] 1 < 𝑐 ) ↔ ( 2 ∈ ℝ ∧ 1 < 2 ) ) |
| 209 |
196 208
|
bitri |
⊢ ( [ 2 / 𝑐 ] ( 𝑐 ∈ ℝ ∧ 1 < 𝑐 ) ↔ ( 2 ∈ ℝ ∧ 1 < 2 ) ) |
| 210 |
|
sbcg |
⊢ ( 2 ∈ ℝ → ( [ 2 / 𝑐 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) ) |
| 211 |
3 210
|
ax-mp |
⊢ ( [ 2 / 𝑐 ] ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ↔ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 212 |
195 209 211
|
3imtr3i |
⊢ ( ( 2 ∈ ℝ ∧ 1 < 2 ) → ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 213 |
3 4 212
|
mp2an |
⊢ ¬ ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) |
| 214 |
|
eqimss |
⊢ ( ( topGen ‘ 𝐼 ) = ( topGen ‘ ran (,) ) → ( topGen ‘ 𝐼 ) ⊆ ( topGen ‘ ran (,) ) ) |
| 215 |
213 214
|
mto |
⊢ ¬ ( topGen ‘ 𝐼 ) = ( topGen ‘ ran (,) ) |
| 216 |
215
|
nesymir |
⊢ ( topGen ‘ ran (,) ) ≠ ( topGen ‘ 𝐼 ) |
| 217 |
|
df-pss |
⊢ ( ( topGen ‘ ran (,) ) ⊊ ( topGen ‘ 𝐼 ) ↔ ( ( topGen ‘ ran (,) ) ⊆ ( topGen ‘ 𝐼 ) ∧ ( topGen ‘ ran (,) ) ≠ ( topGen ‘ 𝐼 ) ) ) |
| 218 |
2 216 217
|
mpbir2an |
⊢ ( topGen ‘ ran (,) ) ⊊ ( topGen ‘ 𝐼 ) |